Imagine a theory in which there is a weak CC interaction but with a vertex $\gamma^\mu (g_V - g_A \gamma^5)$ But still short range (ie due to a very massive charged gauge boson).

(2.1) Write the amplitude for the process $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$ in this theory assuming that the mass of the gauge boson is much heavier than the mass of the muon.

(2.2) Compute the energy dependence of the emitted e^- in that theory. How it compares with the case of a V-A interaction?

(2.3) Compute the total decay width of the muon in that theory. How it compares with the case of a V-A interaction?

Draw the dominant diagrams for the decay of a D^0 meson ($D^0 = (c\bar{u})$ meson) in the following channels: $D^0 \rightarrow K^- \pi^+$, $D^0 \rightarrow K^+ \pi^-$. Derive the expected ratio of the decay branching ratios in these channels neglecting mixing with the third generation. Compare with results in PDB.