Elementary Particle Physics: Assignment # 11 (two pages) Due Thursday April 21

1 Assume that the vertex for the coupling of a X spin 1 boson to a pair of massless fermions f_1 and \bar{f}_2 is $-ig_X\gamma^\mu\frac{1}{2}(g_V-g_A\gamma^5)$. Compute the Feynman amplitude for $X\to f_1\bar{f}_2$, its square average and show that the decay width

$$\Gamma[X \to f_1 \bar{f}_2] = \frac{g_X^2 M_X}{48\pi} (g_V^2 + g_A^2)$$
 (1)

Use this to obtain the analytical expressions of $\Gamma[Z \to e^+e^-]$, $\Gamma[Z \to \nu \overline{\nu}]$, $\Gamma[Z \to hadrons]$, $\Gamma_{\rm tot}[Z]$, $\Gamma[W^+ \to e^+\nu_e]$, $\Gamma[W^+ \to hadrons]$, $\Gamma_{\rm tot}[W]$. (neglect the mass of all fermions and remember that $m_{top}=174$ so it cannot be produced in the decay of the Z of the W). Evaluate them numerically using $G=1.16\times 10^{-5}~{\rm GeV}^-2~M_W=80.4~{\rm GeV}$, $M_Z=91.2~{\rm GeV}$, $\sin^2\theta_W=0.22$. Compare with the results in PDB and comment on the comparison.

2 Rewrite the standard model electroweak lagrangian for the 1st generation:

$$\mathcal{L} = \frac{1}{4} W_{\mu\nu}^{i} W^{\mu\nu,i} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

$$+ \overline{Q_L} \gamma^{\mu} \left(i \partial_{\mu} - g \frac{\sigma_k}{2} W_{\mu}^{k} - g' \frac{1}{6} B_{\mu} \right) Q_L$$

$$+ \overline{u_R} \gamma^{\mu} \left(i \partial_{\mu} - g' \frac{2}{3} B_{\mu} \right) u_R$$

$$+ \overline{d_R} \gamma^{\mu} \left(i \partial_{\mu} + g' \frac{1}{3} B_{\mu} \right) d_R$$

$$+ \overline{L_L} \gamma^{\mu} \left(i \partial_{\mu} - g \frac{\sigma_i}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_L + \overline{e_R} \gamma^{\mu} \left(i \partial_{\mu} + g' B_{\mu} \right) e_R$$

$$+ \left| \left(i \partial_{\mu} - g \frac{\sigma_i}{2} W_{\mu}^{i} - g' \frac{1}{2} B_{\mu} \right) \phi \right|^2 - \mu^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$$

$$- \left(\lambda^{u} \overline{Q_L} (i \sigma_2) \phi^* u_R + \lambda^{d} \overline{Q_L} \phi d_R + \lambda^{e} \overline{L_L} \phi e_R + h.c. \right)$$

after spontaneous symmetry breaking $\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$ (in the unitary gauge) in terms of the physical states

$$\begin{split} W^{\pm}_{\mu} &= \frac{1}{\sqrt{2}} (W^1_{\mu} \mp i W^2_{\mu}) \,, \qquad Z^{\mu} = \cos \theta_w W^3_{\mu} - \sin \theta_w B^{\mu} \,, \\ A^{\mu} &= \sin \theta_w W^3_{\mu} + \cos \theta_w B^{\mu} \,, \qquad h \\ e &= e_L + e_R \,, \qquad u = u_L + u_R \,, \qquad d = d_L + d_R \,, \qquad \nu \end{split}$$

In particular:

- (2.1) show that if the field A^{μ} corresponds to the photon then $\tan \theta_w = \frac{g'}{g}$ and $\frac{1}{e^2} = \frac{1}{g^2} + \frac{1}{g'^2}$
- (2.2) Obtain the expressions for the masses of all the particles and in particular show

$$M_W = \frac{1}{2}gv$$
 $M_Z = \frac{1}{2\cos\theta_w}gv$ $m_h^2 = 2\lambda v^2$ $m_f = \frac{\lambda^f}{\sqrt{2}}v$

(2.3) If we write the terms of the coupling of the \mathbb{Z}^0 to any of the fermions as

$$\mathcal{L}_{Z0,f} = -\frac{g_Z}{2} \bar{f} \gamma^{\mu} (g_V^f + \gamma^5 g_A^f) f Z_{\mu} \equiv -\frac{g_Z}{4} \bar{f} \gamma^{\mu} (R_f (1 + \gamma^5) + L_f (1 - \gamma^5) f Z_{\mu})$$
with $g_Z = g/\cos\theta_w$ obtain g_V^f , g_A^f , L_f and R_f for $f = u, d, e$ and ν .

(3.1) Show that if the SM contained several Higgs multiplets with weak isospins T_i and hypercharges Y_i whose neutral states adquire a vev v_i , then the ρ parameter

$$\rho = \frac{M_W^2}{\cos^2 \theta_w M_Z^2} = \frac{\sum_i v_i^2 [T_i (T_i + 1) - Y_i^2]}{2 \sum_i Y_i^2 v_i^2}$$
(3)

(where we have used that in our notation $Q = Y + T_3$)

(3.2) Assume that the SM contains a doublet with vev v_w and another scalar field with weak isospin T and hypercharge Y and vev v, show what bounds can be derived on the ratios of the vevs if we know that the ρ parameter has been measured to be $0.01 \ge \rho - 1 \ge -0.03$. (For your amusement you can check Phys.Lett.B232:383,1989).