Elementary Particle Physics: Assignment # 8 Due Tueday March 29th

- (1) Quarks are in the fundamental representation of color SU(3) (triplet) and antiquarks are anti-triplets. A baryon is a color singlet formed by three quarks while a meson is a color singlet formed with a quark and an antiquark. A pentaquark is a physical state (ie a color singlet) formed with 4 quarks and one antiquark. By explicit composition of the SU(3) representation of the five components, show that a pentaquark could be a "molecule" of a baryon and a meson, or a purely strong bound state of the five components.
- (2) a) Plot the strong coupling constant α_S as a function of $\sqrt{q^2}$

$$\alpha_S(q^2) = \frac{12\pi}{(11N_c - 2N_f) \ln \frac{q^2}{\Lambda^2}}$$

for 10 GeV $<\sqrt{q^2}<100$ GeV with $\Lambda=0.3$ GeV, $\Lambda=1$ GeV and $\Lambda=0.1$ GeV.

- b) The measured value of $\alpha_S(Mz) = 0.1185 \pm 0.0006$. What value of Λ and for what number of flavours would give this value of $\alpha_S(Mz)$?.
- c) How can you explain that according to the PDB the corresponding extracted value of $\Lambda = 214 \pm 7$ MeV?