

Comparing to data

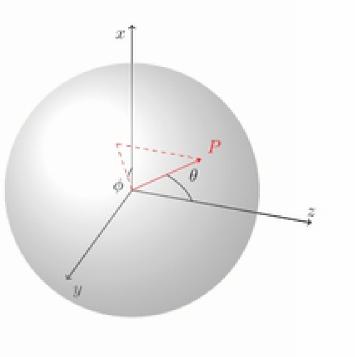
ցւօսի	А			reference
JADE	- 0.05	±	0.06	20
MARK J	- 0.01	±	0.06	21
PLUTO	0.07	±	0.10	22
TASSO	-0.06	<u>+</u>	0.08	23

Table 3 : Angular asymmetry of $\mu^+\mu^-$ pair production at \sqrt{s} = 35 GeV (PLUTO \sqrt{s} < 31.6 GeV).

5 .

NOTE:

I have chosen the collision axis as \hat{z} and the vertical in the page as \hat{x} and the perpendicular to the page as and θ is the angle in the page plane (and the page is $\phi = 0$



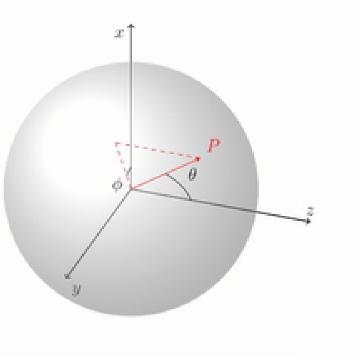
In this system the coordinates of the position vector \vec{r}

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

The full space is covered by $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.

NOTE:

I have chosen the collision axis as \hat{z} and the vertical in the page as \hat{x} and the perpendicular to the page as and θ is the angle in the page plane (and the page is $\phi = 0$



In this system the coordinates of the position vector \vec{r}

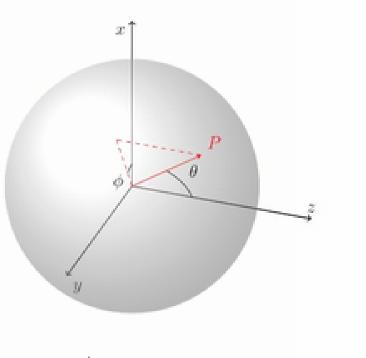
 $x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

The full space is covered by $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.

So changing \vec{r} to $-\vec{r}$ means changing (θ, ϕ) to $(\pi - \theta, \pi + \phi)$

NOTE:

I have chosen the collision axis as \hat{z} and the vertical in the page as \hat{x} and the perpendicular to the page as and θ is the angle in the page plane (and the page is $\phi = 0$



In this system the coordinates of the position vector \vec{r}

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

The full space is covered by $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.

So changing \vec{r} to $-\vec{r}$ means changing (θ, ϕ) to $(\pi - \theta, \pi + \phi)$ But we know that the cross section cannot depend on ϕ because of symmetry about the collision axis. So

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\pi - \theta) \qquad \Leftrightarrow \qquad \frac{d\sigma}{d\Omega}(\vec{r}_{\mu^{-}}) = \frac{d\sigma}{d\Omega}(-\vec{r}_{\mu^{-}})$$

In $e^- + e^+ \rightarrow \mu^- + \mu^+$ since the electromagnetic interaction vertex does not connect electrons and muons, if \mathcal{P} and \mathcal{C} are conserved, they have to be conserved independently in the initial electrons and in the final state muons.

In $e^- + e^+ \rightarrow \mu^- + \mu^+$ since the electromagnetic interaction vertex does not connect electrons and muons, if \mathcal{P} and \mathcal{C} are conserved, they have to be conserved independently in the initial electrons and in the final state muons.

In particular looking at the final state muons

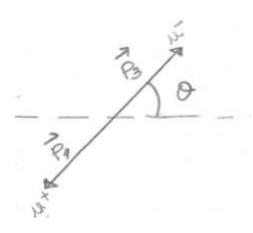
 \mathcal{P} Cons

 \mathcal{P} Conservation: The number of muons produced in direction \vec{r} must be same as produced in direction $-\vec{r}$. So

$$\frac{d\sigma}{d\Omega}(\vec{r}_{\mu^-}) = \frac{d\sigma}{d\Omega}(-\vec{r}_{\mu^-}) \ \Rightarrow \ \frac{d\sigma}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\pi-\theta)$$

In $e^- + e^+ \rightarrow \mu^- + \mu^+$ since the electromagnetic interaction vertex does not connect electrons and muons, if \mathcal{P} and \mathcal{C} are conserved, they have to be conserved independently in the initial electrons and in the final state muons.

In particular looking at the final state muons



 \mathcal{P} Conservation: The number of muons produced in direction \vec{r} must be same as produced in direction $-\vec{r}$. So

$$\frac{d\sigma}{d\Omega}(\vec{r}_{\mu^-}) = \frac{d\sigma}{d\Omega}(-\vec{r}_{\mu^-}) \quad \Rightarrow \quad \frac{d\sigma}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\pi - \theta)$$

 \mathcal{C} Conservation: The number of μ^- produced in direction \vec{r} must be the same as the number of μ^+ produced in that same direction.

But in the COM they are produced back to back $(\vec{r}_{\mu^+}=-\vec{r}_{\mu^-})$ So again

$$\frac{d\sigma}{d\Omega}(\vec{r}_{\mu^{-}}) = \frac{d\sigma}{d\Omega}(\vec{r}_{\mu^{+}}) = \frac{d\sigma}{d\Omega}(-\vec{r}_{\mu^{-}}) \Rightarrow \qquad \frac{d\sigma}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\pi - \theta)$$

Integrating over Ω we get the predicted total cross section

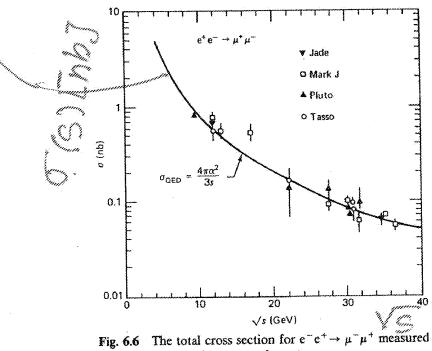
$$\sigma_{e^{-}+e^{+}\to\mu^{-}+\mu^{+}} = \int_{0}^{2\pi} d\phi \int_{-1}^{1} d(\cos\theta) \left. \frac{d\sigma_{e^{-}+e^{+}\to\mu^{-}+\mu^{+}}}{d\Omega} \right|_{\text{COM}}$$
$$= \frac{\alpha^{2}}{4s} (2\pi) \int_{-1}^{1} d(\cos\theta) \left(1+\cos^{2}\theta\right) = \frac{\alpha^{2}}{4s} (2\pi) \frac{8}{3} = \frac{4\pi\alpha^{2}}{3s}$$

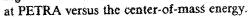
Integrating over Ω we get the predicted total cross section

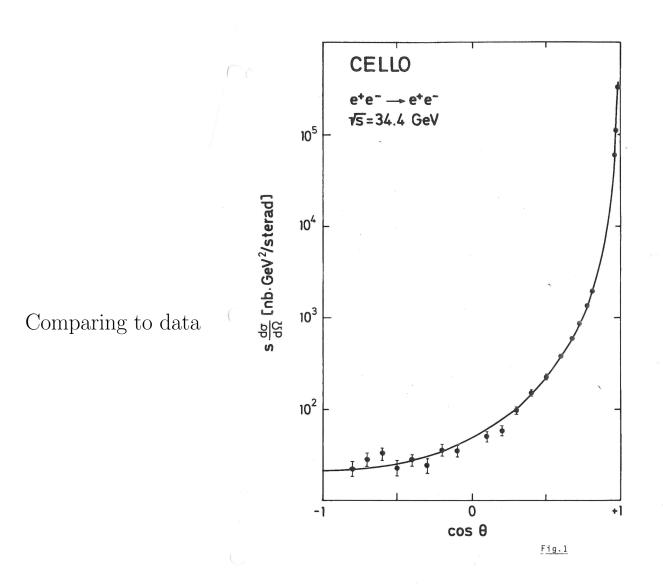
$$\sigma_{e^{-}+e^{+}\to\mu^{-}+\mu^{+}} = \int_{0}^{2\pi} d\phi \int_{-1}^{1} d(\cos\theta) \frac{d\sigma_{e^{-}+e^{+}\to\mu^{-}+\mu^{+}}}{d\Omega} \Big|_{COM}$$
$$= \frac{\alpha^{2}}{4s} (2\pi) \int_{-1}^{1} d(\cos\theta) (1+\cos^{2}\theta) = \frac{\alpha^{2}}{4s} (2\pi) \frac{8}{3} = \frac{4\pi\alpha^{2}}{3s}$$
$$\sigma(e^{+}e^{-}\to\mu^{+}\mu^{-}) = \frac{4\pi\alpha^{2}}{3s}.$$
(6.33)

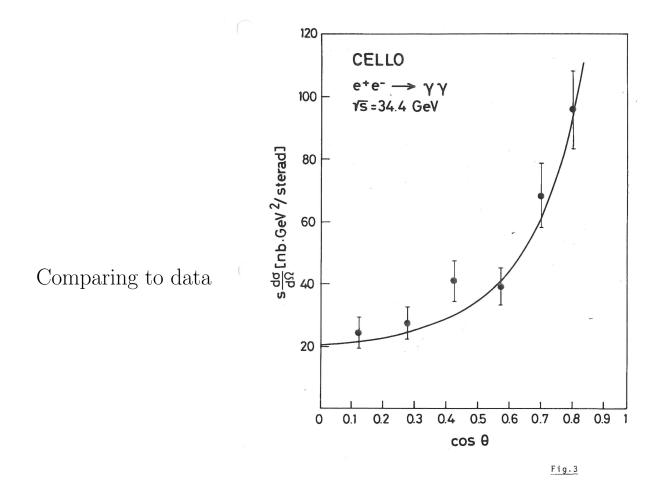
A comparison of this result with PETRA data is shown in Fig. 6.6. The PETRA accelerator consists of a ring of magnets which simultaneously accelerate an electron and positron beam circulating in opposite directions. In selected spots, these beams are crossed, resulting in e^+e^- interactions with center-of-mass energy $\sqrt{s} = 2E_b$, where E_b is the energy of each beam. Equation (6.33) can be written in

(C)









Notice here plotting only from $\cos \theta = 0$ $(\theta = \frac{\pi}{2})$ to $\cos \theta = 1$ $(\theta = 0)$ The other half, $-1 \le \cos \theta \le 0$, has to be the mirror copy of this.