Elementary Particle Physics: Assignment \# 5

Due Feb 2910 am

(1) The Dirac equation for a relativist spin $1 / 2$ particle is: $i \hbar \frac{\partial}{\partial t} \psi=H$ with Hamiltonian operator $H=\vec{\alpha} \cdot \vec{P}+m \beta$ where $P^{j}=-i \frac{\partial}{\partial x^{j}}$ is the 3 -momentum operator, and α and β matrices and their commutation relations are given in the lectures.
1.1 Show that each of the components of the 3 -momentum operator P^{j} commutes with the Hamiltonian in and therefore they are conserved, while none of the orbital angular momentum operator $(\vec{L}=\vec{x} \times \vec{P})$ components commute with the Hamiltonian (Comment: notice that this means that total 3-momentum is conserved and its value can be used together with the energy to characterize a state). [Hint: Remember $\left.\left[x_{i}, P_{j}\right]=i \delta_{i j},\left[P_{i}, P_{j}\right]=0,\left[x_{i}, x_{j}\right]=0\right]$
1.2 Show that the combination $\vec{J}=\vec{L}+\frac{1}{2} \vec{\Sigma}$ with $\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$ commutes with the Hamiltonian (again you have to show that each of the components of this vector commutes with H) (Comment: notice that this means that total angular momentum is also conserved and its value be used together with energy to characterize the state). σ are the Pauli matrices given in class.
1.3 Show that none of the components of \vec{J} commutes with the 3-momentum components (Comment: therefore total angular momentum cannot be used to characterize a state of well defined energy and 3-momentum).
1.4 Show that the helicity operator, $\vec{J} . \vec{P}$, does commute with the 3 -momentum, (Comment: therefore the value of the helicity can be used to characterize the state together with its energy-momentum).
(2) In the chiral representation the 4 -spinors for a fermion with momentum
$\vec{p}=|\vec{p}|(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ with positive and negative helicity are:
$u^{1,2}(\vec{p})=u^{ \pm}(\vec{p})=\binom{\sqrt{E \mp|\vec{p}|} \xi_{p}^{ \pm}}{\sqrt{E \pm|\vec{p}|} \xi_{p}^{ \pm}} \quad$ with $\quad \xi_{p}^{+}=\binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}} \quad \xi_{p}^{-}=\binom{-e^{-i \phi} \sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}$
and the corresponding 4-spinors for the anti-fermion are: $v^{1,2}(\vec{p})=v^{ \pm}(\vec{p})= \pm\binom{\sqrt{E \pm|\vec{p}|} \xi_{p}^{\mp}}{-\sqrt{E \mp|\vec{p}|} \xi_{p}^{\mp}}$
Using these expresions evaluate by direct calculation

$$
\bar{u}^{s}(\vec{p}) v^{r}(-\vec{p}) \text { for the four helicity combinations }
$$

(3) Suppose you apply a gauge transformation with gauge function

$$
\chi(x)=i \kappa \mathrm{e}^{-i p^{\alpha} x_{\alpha}}
$$

(were κ is an arbitrary constant) to the plane wave 4 -vector potential

$$
A^{\nu}(x) \equiv \epsilon^{\nu}(p) \mathrm{e}^{-i p^{\alpha} x_{\alpha}}
$$

3.1) Show that this gauge transformation has the effect of modifying

$$
\epsilon^{\mu} \rightarrow \epsilon^{\mu}+\kappa p^{\mu}
$$

3.2) Show that if we chose $\kappa=\frac{-\epsilon^{0}}{p_{0}}$ we obtain the a polarization vector in the Coulomb gauge, ie

$$
\epsilon^{0}=0 \quad \text { and } \quad \vec{\epsilon} \cdot \vec{p}=0
$$

