Particle Physics: Assignment \# 6

Due Thursday 03/07 before class
(1) Using the transformation properties of the fermion spinors given in class which I repeat here ($P=\gamma^{0}$ and $C=i \gamma^{2} \gamma^{0}$),

$$
\begin{array}{rlr}
\psi_{P}(x)=P \psi\left(x_{P}\right) & \bar{\psi}_{P}(x)=\bar{\psi}\left(x_{P}\right) P \\
\psi^{C}(x)=C \bar{\psi}^{T}(x) & \bar{\psi}^{C}(x)=-\psi^{T}(x) C^{-1}
\end{array}
$$

a) Derive the transformation properties under Parity and Charge Conjugation of the following four bilinears (a and b are two type of fermions)

1) $\bar{\psi}_{a}(x) \psi_{b}(x)$
2) $\bar{\psi}_{a}(x) \gamma_{5} \psi_{b}(x)$
3) $\bar{\psi}_{a}(x) \gamma^{\nu} \psi_{b}(x)$
4) $\bar{\psi}_{a}(x) \gamma^{\nu} \gamma^{5} \psi_{b}(x)$

Hint: Do not forget that there is a (-) sign which you have to include when exchanging fermions.
b)With the resuts above check whether the following Lagrangiangs are invariant under Parity and Charge Conjugation

$$
\begin{aligned}
& \mathcal{L}_{A}=-B \bar{\psi}_{a}(x) \gamma^{\mu} \psi_{a}(x) A_{\mu}(x) \\
& \mathcal{L}_{Z}=-B \bar{\psi}_{a}(x) \gamma^{\mu}\left(1-\gamma^{5}\right) \psi_{a}(x) Z_{\mu}(x) \\
& \mathcal{L}_{W 1}=-D \bar{\psi}_{a}(x) \gamma^{\mu} \psi_{b}(x) W_{\mu}(x)+h . c . \\
& \mathcal{L}_{W 2}=-D \bar{\psi}_{a}(x) \gamma^{\mu}\left(1-\gamma^{5}\right) \psi_{b}(x) W_{\mu}(c)+\text { h.c. }
\end{aligned}
$$

A^{μ} and Z^{μ} are real vector field, defined as odd under charge conjugation. while W^{μ} is a complex vector field which under charge conjugation changes to $-W^{\dagger^{\mu}} . B$ is a real constant (as required by reality of the Lagrangian). D is also a constant but can be complex.
What does this tell you about the Charge Conjugation and Parity properties of electromagnetic interactions?
(2) Draw the Feynman diagram for

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}
$$

and using the Feynman rules given in class obtain the expression of the Feynman amplitude.
(3) Using the chiral representation of the 4 -spinors given in homework 5, (neglect fermion masses) compute the Feynman amplitudes generated by QED for the process

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}
$$

for the 16 helicity combinations in the COM. You should find that only some of the 16 helicity amplitudes are non-zero. Reason why (think of conservation of angular momentum). Compare with the results of question (2) of HW5.

Hint: define \hat{z} axis as the collisions axis and define the $y=0$ plane as the plane where the 4 particles are. Call θ the scattering angle of the μ. Remember you have to use the γ matrices in the chiral representation.

