Particle Physics: Assignment # 7 Due March 28 before class (in class)

1 For the process:

$$e^{-}(s_1, p_1) + e^{-}(s_2, p_2) \to e^{-}(s_3, p_3) + e^{-}(s_4, p_4)$$
 (1)

- (1.1) Draw the lowest order the Feynman diagrams (remember time from left to right and label all momenta and helicities)
- (1.2) Using the Feynman rules for QED construct the corresponding Feynman amplitudes.
- (1.3) show that the spin average squared amplitude is (neglecting m_e)

$$\overline{|\mathcal{M}|^2} = 2e^4 \left(\frac{s^2 + u^2}{t^2} + \frac{2s^2}{tu} + \frac{s^2 + t^2}{u^2} \right)$$

$$s = (p_1 + p_2)^2$$
, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$

- (1.4) Draw the angular dependence that you would expect for one of the outgoing e^- in the COM (as a function of its angle with respect to the direction of the incoming electron) and justify it.
- 2 Plot the QED prediction for the differential cross section in the COM in pb/sr ($pb = 10^{-40}m^2$) as a function of the angle between one of the outgoing electron and one of the incoming electrons for a collider with $\sqrt{s} = 100$ GeV. (I am asking to plot the value for several angles, for example $\theta = 0, 10, 45, 90, 135, 170, 180$). Neglect the running of the coupling constant.
- 3 We have built an e^-e^- collider with beams of energy E=50 GeV. Each beam contains 10^{11} particles per bunch and they cross every 25ns with a cross area of 400 μm^2 . How many electrons per minute do you predict to be emitted within a sr around $\theta=1^\circ$ with respect of one of the incoming electrons? (neglect the dependence of the cross section with θ within that sr). And around $\theta=90^\circ$? Discuss the origin of the difference between those two numbers.