We shall denote the longitudinal momentum fraction of parton a in hadron A by x_a and the parton density of a in A by $f_{a/A}(x_a)$. The cross section for producing a quark or lepton c in the inclusive reaction

$$A + B \rightarrow c + anything$$

is obtained by multiplying the subprocess cross section $\hat{\sigma}$ for

$$a + b \rightarrow c + anything$$

by $dx_a f_{a/A}(x_a)$ and $dx_b f_{b/B}(x_b)$, summing over parton and antiparton types a, b and integrating over x_a and x_b ; also an average must be made over the colors of a and b. The resulting relation is

$$\sigma(AB \to cX) = \sum_{a,b} C_{ab} \int dx_a dx_b \cdot \Big[f_{a/A}(x_a) f_{b/B}(x_b) + (A \mapsto B \text{ if } a \neq b) \Big] \hat{\sigma}(ab \to cX).$$

In this formula $\hat{\sigma}$ is summed over initial and final colors; the initial color-averaging factor C_{ab} appears separately. The color-average factors for quarks and gluons are

$$C_{qq} = C_{qar{q}} = rac{1}{9} \; , \qquad C_{qg} = rac{1}{24} \; , \qquad C_{gg} = rac{1}{64} \; .$$

In a Lorentz frame in which masses can be neglected compared with three-momenta, the four-momenta relations

$$a = x_a A$$
 and $b = x_b B$,

lead to

$$\hat{s}=x_ax_bs=\tau s,$$

where $\sqrt{\hat{s}}$ is the invariant mass of the ab system, \sqrt{s} is the invariant mass of the AB system and we have introduced a convenient

variable τ

$$au=x_ax_b$$
.

Changing to x_a and τ as independent variables the cross section expression becomes

$$\sigma = \sum_{a,b} C_{ab} \int_{0}^{1} d\tau \int_{\tau}^{1} \frac{dx_a}{x_a} \left[f_{a/A}(x_a) f_{b/B}(\tau/x_a) + (A \leftrightarrow B \text{ if } a \neq b) \right] \hat{\sigma}(\hat{s} = \tau s).$$

Thus we can write

$$rac{d\sigma}{d au} = \sum_{a,b} rac{d\mathcal{L}_{ab}}{d au} \, \hat{\sigma}(\hat{s} = au s)$$

with

$$rac{d\mathcal{L}_{ab}(au)}{d au} = C_{ab} \int\limits_{ au}^{1} rac{dx_a}{x_a} \left[f_{a/A}(x_a) f_{b/B}(au/x_a) + (A \leftrightarrow B ext{ if } a
eq b)
ight].$$

The quantity $d\mathcal{L}_{ab}/d\tau$ is called the parton luminosity since multiplying the parton cross section $\hat{\sigma}$ by $d\mathcal{L}/d\tau$ gives the particle cross section $d\sigma/d\tau$ in hadron collisions.

In hard scattering processes at high energy, where the only dimensional scale is \hat{s} , the subprocess cross section has the form

$$\hat{\sigma}(\hat{s}) = c/\hat{s} = c/(\tau s) ,$$

where c is a dimensionless constant. Then, for scaling parton distributions (i.e. the f depend only on x), the quantity $s d\sigma/d\tau$ scales with τ , i.e. it depends on τ alone:

$$s\,\frac{d\sigma}{d\tau}=G(\tau)$$

with the form of the scaling function $G(\tau)$ depending on the parton distributions f(x).