Indirect bound on m_h from M_W versus m_{top}

At one or more loop level

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \frac{1}{1 - \Delta r(m_{top}, m_h)}$$

Indirect bound on m_h from M_W versus m_{top}

At one or more loop level

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \frac{1}{1 - \Delta r(m_{top}, m_h)}$$

$e^+e^- \rightarrow f\bar{f}$: Total cross section

$$\mathcal{L} = -e \, Q_f \, \bar{f} \gamma^\mu \, A_\mu \, f - \frac{g}{2 \cos \theta_W} \, \bar{f} \, \gamma_\mu (g_V^d + g_A^f \gamma^5) f \, Z^\mu$$

$$\begin{split} \sigma &= \frac{4\pi\alpha^2 N_c}{3s} Q_f^2 + \frac{N_c G_F^2 M_Z^4 s}{6\pi [(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2]} (g_V^{e^{-2}} + g_A^{e^{-2}}) (g_V^{f^{-2}} + g_A^{f^{-2}}) \\ &+ \frac{4N_c \alpha G_F M_Z^2 (s - M_Z^2)}{3\sqrt{2} [(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2]} Q_f g_V^e g_V^f \end{split}$$

 $e^+e^- \rightarrow f\bar{f}$ at $\sqrt{s} \sim M_Z$

- LEP (CERN) produced 2×10^7 unpolarized Z's
- SLD (SLAC) produced 2×10^5 Z's with $P_e \sim 75\%$

 \Longrightarrow M_Z and Γ_Z

Knowing M_Z and G_F \Rightarrow prediction of Γ_Z in terms of $\sin^2 \theta_W$ Incluing loop corrections

$$\overline{\sin^2 \theta_W} = \left(1 - \frac{M_W^2}{M_Z^2}\right) \Delta(m_{\text{top}}, M_H)$$

 $e^+e^- \to f\bar{f}$ at $\sqrt{s} \sim M_Z$

$$e^+e^- \to f\bar{f}$$
 at $\sqrt{s} \sim M_Z$

• The decay width into the different fermions:

$$\Gamma(Z \to \bar{f}f) = \frac{G_F M_Z^3}{6\sqrt{2}\pi} N_C^f (g_V^{f^2} + g_A^{f^2})$$

• The forward-backward asymmetry

$$A_{FB}(M_Z) = 3 \frac{g_V^f g_A^f}{(g_V^{f^2} + g_A^{f^2})} \frac{g_V^e g_A^e}{(g_V^{e^2} + g_A^{e^2})}$$

 \Rightarrow Good determination of couplings

$$g_V^f = T_3^f - 2Q_f \overline{\sin^2 \theta_W}$$
$$g_A^f = T_3^f$$

Where incluing loop corrections

$$\overline{\sin^2 \theta_W} = \left(1 - \frac{M_W^2}{M_Z^2}\right) \Delta(m_{\text{top}}, M_H)$$

Precision Electroweak Observations

Light Higgs Required

The Higgs Decay Modes

$$\begin{split} \Gamma(h \to f\bar{f}) &= \frac{G_F m_f^2(N_c)}{4\sqrt{2\pi}} M_h \left(1 - r_f\right)^{\frac{3}{2}} \quad r_i \equiv \frac{4M_i^2}{M_h^2} \\ \Gamma(h \to W^+ W^-) &= \frac{G_F M_h^3}{8\pi\sqrt{2}} \sqrt{1 - r_W} \left(1 - r_W + \frac{3}{4}r_W^2\right) \\ \Gamma(h \to ZZ) &= \frac{G_F M_h^3}{8\pi\sqrt{2}} \sqrt{1 - r_Z} \left(1 - r_Z + \frac{3}{4}r_Z^2\right) \\ \Gamma_0(h \to gg) &= \frac{G_F \alpha_s^2 M_h^3}{64\sqrt{2\pi^3}} \mid \sum_q F_{1/2}(r_q) \mid^2 \quad \Gamma(h \to \gamma\gamma) = \frac{\alpha^2 G_F}{128\sqrt{2\pi^3}} g_V M_h^3 \mid \sum_{q,W} N_{ci} Q_i^2 F_i(r_i) \mid^2 \end{split}$$

$$\begin{split} F_{1/2}(r_q) &\equiv -2r_q [1+(1-r_q)f(r_q)] \\ F_W(r_W) &= 2+3r_W [1+(2-r_W)f(r_W)] \end{split} f(x) = \begin{cases} \sin^{-2}(\sqrt{1/x}), & \text{if } x \geq 1 \\ -\frac{1}{4} \left[\log \left(\frac{1+\sqrt{1-x}}{1-\sqrt{1-x}} \right) - i\pi \right]^2, & \text{if } x < 1, \end{cases}$$

Higgs Branching Ratios to Fermion Pairs

10⁰

Higgs Branching Ratios

10⁻⁴ – 50.0

bb

 $\tau^+ \tau^-$

CC

SS

μ[†]μ

Higgs Branching Ratios to Gauge Boson Pairs

Higgs Production at e^+e^-

Searches at LEP ($e^+e^-\sqrt{s} = 90 - 210 \text{ GeV}$) $\Rightarrow M_H \ge 114.4 \text{ GeV}$

Higgs Production at Hadron Colliders

Higgs Production at LHC 7-8 TeV

SM main discovery modes for $\simeq 125$ GeV:

 $pp \to \gamma\gamma$ $pp \to ZZ \to \ell\ell\ell\ell$ $pp \to WW \to \ell\nu\ell\nu$

.

Also may be possible in:

 $pp \rightarrow b\bar{b} \text{ (only VH)}$ $pp \rightarrow \tau \bar{\tau}$

Friday, November 9, 12

Friday, November 9, 12

Meassured Higgs Mass

Spin-Parity Determination $H \rightarrow \gamma \gamma$ decay angle $\cos(\theta^*)$ in $H \rightarrow 77^* \rightarrow 4l$ ATLAS $s = 7 \text{ TeV}, 4.5 \text{ fb}^1$ Observed $s = 8 \text{ TeV}, 20.3 \text{ fb}^{1}$ Expected 0^+ SM $\pm 1\sigma$ $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ 0^{+} SM + 2 σ $s = 8 \text{ TeV}, 20.3 \text{ fb}^{1}$ 0^{+} SM + 3 σ • $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ Several $J^{P} \pm 1\sigma$ $H \rightarrow \gamma \gamma$

 $J^{P} \pm 2 \sigma$

 $J^{P} \pm 3 \sigma$

 $J^{P} = 0_{h}^{+} \quad J^{P} = 0^{-} \quad J^{P}_{\kappa_{q}=\kappa_{g}} 2^{+}$

Combined with Boosted-

Decision-Tree (BDT)

Analyzed channels:

Collins-Sopper frame

variables sensitive to J^P

sensitive to

 $-\Delta \phi_{\ell\ell}$, $M_{\ell\ell}$, ...

- reconstruction sensitive to J^P
 - -2 masses (M₇₁, M₇₂) and 5 angles
 - Combined with BDT or Matrix **Element-based discriminant** D_{IP}

۶D

40

30

20

10

0

-10

-20

-30

 $J^{P} = 2^{+}$

κ_α=0

p_<300 GeV p_<125 GeV p_<300 GeV

 $J^{P} = 2^{+}$

 $\kappa_{a}=2\kappa_{a}$

 $J^{P} = 2^{+}$

 $s = 7 \text{ TeV}, 4.5 \text{ fb}^{1}$

s = 8 TeV, 20.3 fb¹

 $J^{P} = 2^{+}$

 $\kappa_{a} = 2\kappa_{a}$

p_<125 GeV

Observed Production+Decay Channels in Brief

$$\mu = \frac{(\sigma)_{obs}}{(\sigma)_{SM}} \times \frac{(BR)_{obs}}{(BR)_{SM}}$$

Higgs Couplings to SM Particles

