Elementary Particle Physics: Assignment # 10 Due Wednesday April 30 before class

- 1 Imagine a theory in which there is a weak charge interacion with a vertex $\gamma^{\mu}(g_V g_A \gamma^5)$ and still short range (ie due to a very massive charged gauge boson).
 - (1.1) Write the amplitude for the process $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ in this theory assuming that the mass of the gauge boson is much heavier than the mass of the muon.
 - (1.2) Compute the energy dependence of the emitted e^- in that theory (you will have to to the traces and integrate the phase space following for example in Halzen and Martin pages 261-263)
 - (1.3) Plot the ratio of the electron energy distribution of the events for the V-A interaction $(g_V = g_A)$ over that of a vector interaction $(g_A = 0)$ (normalized to the same total number of events). Which interaction gives the larger number of more energetic electrons?
- 2 Draw the dominant diagrams for the decay of a D^0 meson ($D^0 = (c\bar{u})$ meson) in the following channels: $D^0 \to K^-\pi^+$, $D^0 \to K^+\pi^-$.
 - Derive the expected ratio of the decay branching ratios in these channels neglecting mixing with the third generation. Compare with results in the review of Particle Data Group.