Elementary Particle Physics: Assignment # 7 Due Thursday April 9th

1 The lagrangian for electromagnetic interactions of an electron ψ (charge -1 and mass m) and a scalar ϕ of charge e_i and mass m_s with an electric field (photon) A is

$$\mathcal{L} = \bar{\psi} \left(i\partial_{\mu}\gamma^{\mu} - e\gamma^{\mu}A_{\mu} - m \right) \psi + \left[(\partial_{\mu} + iee_iA_{\mu})\phi \right] \left[(\partial^{\mu} + iee_iA^{\mu})\phi \right]^{\dagger} - m_s^2 |\phi|^2$$

- With this Lagrangian the amplitude for $e^{-}(k,r) + s(p) \rightarrow e^{-}(k',r') + s(p')$ is

$$M = \frac{e^2 e_i}{q^2} \bar{u}^{r'}(k')(\not p + \not p')u^r(k)$$

- Obtain the unpolarized squared amplitude and the corresponding differential cross section $\frac{d\sigma}{dE'd\Omega}$ in the LAB system (where $p = (m_s, 0)$). Neglect the electron mass. As usual E' and Ω are the corresponding energy and solid angle of the outgoing electron.
- With the results above obtain the differential cross section $\frac{d\sigma}{dE'd\Omega}$ for the DIS $e^-p \rightarrow e^-X$ in a parton model with partons being scalars.
- Predict the expected scaling and relations between the form factors F_1^{ep} and F_2^{ep} in this scalar-parton model