The Muon g-2 Experiment: Review the Controversy
CHEE SHENG FONG¹, Stony Brook University, Stony Brook, NY —
The ability to measure the leptonic anomalous magnetic moment very
precisely provides a stringent test on the Standard Model (SM). The
current experimental result of the measurement of the anomalous mag-
netic moment of muon a_{μ} (up to relative precision of 0.5 ppm) from the
BNL Muon g-2 experiment (E821) shows a discrepancy of 2.4σ between
the experimental result and the theoretical value predicted by the SM.
Some has argued that this might hint a ‘New Physics’ beyond the SM.
However, in the calculation of the a_{μ} from the SM, though the QED and
the electroweak contributions can be determined up to sufficient preci-
sion to compare with the experimental result, the hadronic contribution
depends upon the experimental data from either the e^+e^- annihilation
to hadrons or the hadronic τ decay. By using the latter dataset, the
discrepancy between experimental determination of a_{μ} and the SM is re-
duced to 0.9σ. The controversy lies in the fact that the experimental
results from the e^+e^- annihilation to hadrons or the hadronic τ decay
are inconsistent with each other by themselves. Further investigations
are needed before a conclusion can be made.

¹Spring 2006 PHY599