Summary I

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity

– No distinction between Majorana or Dirac Neutrinos

- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^{C}$
 - \rightarrow Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$

Question: How to search for $m_{\nu} \ll \mathcal{O}(eV)$?

Answer: Tomorrow....

- I. Standard Neutrino Properties and Mass Terms (Beyond Standard)
- **II.** Neutrino Oscillations
- **III.** The Data and Its Interpretation
- **IV.** Some Missing Pieces and The Meaning of All This

Plan of Lecture II

Neutrino Oscillations

Vacuum Oscillations

Matter Effects: MSW

Effects of *v* **Mass**

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^{+}_{\mu}\sum_{ij}\left(\frac{U^{ij}_{LEP}}{V^{\mu}}\overline{\ell^{i}}\gamma^{\mu}L\nu^{j}+U^{ij}_{CKM}\overline{U^{i}}\gamma^{\mu}LD^{j}\right)+h.c.$$

$$w^{+}$$

$$I_{i}$$

$$w^{+}$$

$$\overline{I_{i}}$$

$$w^{+}$$

$$\overline{I_{i}}$$

• SM gauge invariance does not imply $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ symmetry

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{LEP}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j+U^{ij}_{CKM}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right)+h.c.$$

- We want to know:
 - * How many, N, neutral states ν_i and their masses m_i

* Their mixing: # angles =
$$\frac{N(N-1)}{2}$$
 =
$$\begin{cases} 1 \text{ for } N = 2\\ 3 \text{ for } N = 3\\ 6 \text{ for } N = 4 \end{cases}$$

* Their CP properties:

Dirac:
$$\nu^C \neq \nu$$
 # phases = $\frac{(N-1)(N-2)}{2} = \begin{cases} 0 \text{ for } N = 2\\ 1 \text{ for } N = 3\\ 3 \text{ for } N = 4 \end{cases}$
Majorana: $\nu^C = \nu$ # extra phases = $(N-1) = \begin{cases} 1 \text{ for } N = 2\\ 2 \text{ for } N = 3\\ 3 \text{ for } N = 4 \end{cases}$
 $U_{\alpha j}^{\text{Maj}} = U_{\alpha j}^{\text{Dir}} \times e^{-i\eta_j}$

Effects of ν **Mass: Flavour Transitions**

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3) = (
u_e,
u_\mu,
u_ au)$

 \Rightarrow Flavour is not conserved during propagation $\Rightarrow \nu$ can be detected with different (or same) flavour than produced

• The probability $P_{\alpha\beta}$ of producing neutrino with flavour α and detecting with flavour β has to depend on:

- Misalignment between interaction and propagation states ($\equiv U$)
- Difference between propagation eigenvalues
- Propagation distance

Vacuum Oscillations

- If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$
 - is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$|
u_{lpha}
angle = \sum_{i=1}^{n} U_{lpha i} |
u_i
angle$$

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

$$|
u(t)
angle = \sum_{i=1}^{n} U_{\alpha i} |
u_i(t)
angle$$

• it can be detected with flavour β with probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U_{\beta i}^* \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

Vacuum Oscillations

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^{2} = |\sum_{i=1}^{n} U_{\alpha i} U_{\beta i}^{*} \langle \nu_{i}(t) | \nu_{i}(0) \rangle|^{2}$$

• We call E_i the neutrino energy and m_i the neutrino mass

• Under the approximations:

(1) $|\nu\rangle$ is a plane wave $\Rightarrow |\nu_i(t)\rangle = \mathbf{e}^{-i E_i t} |\nu_i(0)\rangle$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

with
$$\Delta_{ij} = (E_i - E_j)t$$

(2) relativistic ν

$$E_i = \sqrt{p_i^2 + m_i^2} \simeq p_i + \frac{m_i^2}{2E_i}$$

(3) Assuming $p_i \simeq p_j = p \simeq E$

$$rac{\Delta_{ij}}{2} = 1.27 rac{m_i^2 - m_j^2}{\mathrm{eV}^2} rac{L/E}{\mathrm{Km/GeV}}$$

Vacuum Oscillations

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{ conserves } \operatorname{CP}$$

$$- \operatorname{The last piece} \quad 2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin(\Delta_{ij}) \quad \text{opposite sign for } \overline{\nu}$$

 \rightarrow violates CP

P_{αβ} depends on Theoretical Parameters
 Δm²_{ij} = m²_i - m²_j The mass differences
 U_{αj} The mixing angles (and Dirac phases)

and on Two Experimental Parameters:

- E The neutrino energy
- L Distance ν source to detector
- No information on mass scale nor Majorana phases

L (distance)

- $\Delta m^2 \rightarrow -\Delta m^2$ and $\theta \rightarrow -\theta + \frac{\pi}{2}$ is only a redefinition $\nu_1 \leftrightarrow \nu_2$ \Rightarrow We can chose the convention $\Delta m^2 > 0$ and $0 \le \theta \le \frac{\pi}{2}$
- Moreover P_{osc} is symmetric under $\Delta m^2 \rightarrow -\Delta m^2$ or $\theta \rightarrow -\theta + \frac{\pi}{2}$ \Rightarrow We can chose the convention $\Delta m^2 > 0$ and $0 \le \theta \le \frac{\pi}{4}$ This only happens for 2ν vacuum oscillations

 $-\Delta m^2 \gg E/L \Rightarrow \text{Averaged oscillations} \\ \Rightarrow \langle \sin^2 \left(1.27 \Delta m^2 L/E \right) \rangle \simeq \frac{1}{2} \rightarrow \langle P_{osc} \rangle \simeq \frac{1}{2} \sin^2(2\theta)$

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \notin 0$

– Need the right set up (\equiv right $\langle \frac{L}{E} \rangle$) for Δm^2

Source	E (GeV)	L (Km)	$\Delta m^2~({ m eV}^2)$
Solar	10^{-3}	10^{7}	10^{-10}
Atmospheric	$0.1 - 10^2$	$10 - 10^3$	$10^{-1} - 10^{-4}$
Reactor	10^{-3}	SBL : 0.1–1	$10^{-2} - 10^{-3}$
		LBL : $10-10^2$	$10^{-4} - 10^{-5}$
Accelerator	10	SBL : 0.1	$\gtrsim 0.01$
		LBL : $10^2 - 10^3$	$10^{-2} - 10^{-3}$

Equations of Motion for Weak Eigenstates

- ν oscillations can also be understood from the eq. of motion of weak eigenstates
- A state mixture of 2 neutrino species $|\nu_e\rangle$ and $|\nu_X\rangle$ or equivalently of $|\nu_1\rangle$ and $|\nu_2\rangle$

 $\Phi(x) = \Phi_e(x) |\nu_e\rangle + \Phi_X(x) |\nu_X\rangle = \Phi_1(x) |\nu_1\rangle + \Phi_2(x) |\nu_2\rangle$

• Evolution of $\Phi(x)$ = is given by the Dirac Equations. Calling $\Phi_i(x) = \nu_i(x)\phi_i$

In the relativistic limit
$$\sqrt{E^2 - m_i^2} \simeq E - \frac{m_i^2}{2E}$$

$$-i\frac{\partial}{\partial x}\begin{pmatrix}\nu_1(x)\\\nu_2(x)\end{pmatrix} = \begin{pmatrix}E-\frac{m_1^2}{2E} & 0\\0 & E-\frac{m_2^2}{2E}\end{pmatrix}\begin{pmatrix}\nu_1(x)\\\nu_2(x)\end{pmatrix}$$

For initial conditions $\nu_{\alpha}(0) = 1$ and $\nu_{\beta}(0) = 0$

and final state $u_{\alpha}(L) = 0 \text{ and } \nu_{\beta}(L) = 1$

Neutrinos in Matter:Effective Potentials

• In SM the characteristic ν -p interaction cross section

$$\sigma \sim \frac{G_F^2 E^2}{\pi} \sim 10^{-43} \text{cm}^2 \quad \text{at } \mathcal{E}_{\nu} \sim \text{MeV}$$

- So if a beam of $\Phi_{\nu} \sim 10^{10} \nu' s$ was aimed at the Earth only 1 would be deflected so it seems that for neutrinos *matter does not matter*
- But that cross section is for *inelastic* scattering

Does not contain forward elastic coherent scattering

• In *coherent* interactions $\Rightarrow \nu$ and medium remain unchanged Interference of scattered and unscattered ν waves

Neutrinos in Matter:Effective Potentials

- Coherence \Rightarrow decoupling of ν evolution equation from equations of the medium.
- The effect of the medium is described by an effective potential depending on density and composition of matter

 \mathcal{V}

• For example for ν_e in medium with e^-

 $N_e \equiv$ electron number density

 $V_{CC} = \sqrt{2}G_F N_e$

- The effective potential has opposite sign for neutrinos y antineutrinos
- Other potentials for ν_e ($\overline{\nu}_e$) due to different particles in medium

medium	V_C	V_N		
e^+ and e^-	$\pm \sqrt{2}G_F(N_e - N_{\bar{e}})$	$\mp \frac{G_F}{\sqrt{2}} (N_e - N_{\bar{e}}) (1 - 4\sin^2 \theta_W)$		
p and $ar{p}$	0	$\pm \frac{G_F}{\sqrt{2}} (N_p - N_{\overline{p}})(1 - 4\sin^2\theta_W)$		
n and $ar{n}$	0	$\mp rac{G_F}{\sqrt{2}}(N_{m n}-N_{ar n})$		
Neutral $(N_e = N_p)$	$\pm \sqrt{2}G_F N_e$	$\mp \frac{G_F}{\sqrt{2}} N_n$		

Neutrinos in Matter: Evolution Equation

Evolution Eq. for $|\nu\rangle = \nu_1 |\nu_1\rangle + \nu_2 |\nu_2\rangle \equiv \nu_e |\nu_e\rangle + \nu_X |\nu_X\rangle$ (X = μ, τ , sterile)

(a) In vacuum in the mass basis:
$$-i\frac{\partial}{\partial x}\begin{pmatrix}\nu_1\\\nu_2\end{pmatrix} = E - \begin{pmatrix}\frac{m_1^2}{2E} & 0\\0 & \frac{m_2^2}{2E}\end{pmatrix}\begin{pmatrix}\nu_1\\\nu_2\end{pmatrix}$$

(b) In vacuum in the weak basis

$$-i\frac{\partial}{\partial x} \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix} = E - \frac{m_1^2 + m_2^2}{2E} - \begin{pmatrix} -\frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix}$$

(c) In matter (e, p, n) in weak basis

$$-i\frac{\partial}{\partial x}\begin{pmatrix}\nu_{e}\\\nu_{X}\end{pmatrix} = E - V_{X} - \frac{m_{1}^{2} + m_{2}^{2}}{2E} - \begin{pmatrix}V_{e} - V_{X} - \frac{\Delta m^{2}}{4E}\cos 2\theta & \frac{\Delta m^{2}}{4E}\sin 2\theta\\\frac{\Delta m^{2}}{4E}\sin 2\theta & \frac{\Delta m^{2}}{4E}\cos 2\theta\end{pmatrix}\begin{pmatrix}\nu_{e}\\\nu_{X}\end{pmatrix}$$

- \Rightarrow Effective masses and mixing are different than in vacuum
- \Rightarrow If matter density varies along ν trajectory the effective masses and mixing vary too

The effective masses:
$$(A = 2E(V_e - V_X))$$

 $\mu_{1,2}(x) = \frac{m_1^2 + m_2^2}{2} + E(V_e + V_X))$
 $\pm \frac{1}{2}\sqrt{(\Delta m^2 \cos 2\theta - A)^2 + (\Delta m^2 \sin 2\theta)^2}}$
 μ_1^2
 m_1^2
 m_1^2
 m_1^2
 v_1
 v_1
 v_1

At resonant potential: $A_R = \Delta m^2 \cos 2\theta$ Minimum $\Delta \mu^2 = \mu_2^2 - \mu_1^2$

* At A = 0 (vacuum) $\Rightarrow \theta_m = \theta$ * At $A = A_R \Rightarrow \theta_m = \frac{\pi}{2}$ * At $A >> A_R \Rightarrow \theta_m = \frac{\pi}{2} - \theta$

The oscillation length in vacuum

$$L_0^{osc} = \frac{4\pi E}{\Delta m^2}$$

The oscillation length in matter

$$L^{osc} = \frac{L_0^{osc}}{\sqrt{(\Delta m^2 \cos 2\theta - A)^2 + (\Delta m^2 \sin 2\theta)^2}} \equiv \frac{4\pi E}{\Delta \mu^2}$$

 L^{osc} presents a resonant behaviour

At the resonant point

$$L_R^{osc} = \frac{L_0^{osc}}{\sin 2\theta}$$

The width of the resonance in potential:

$$\delta V_R = \frac{\Delta m^2 \sin 2\theta}{E}$$

The width of the resonance in distance:

$$\delta r_R = \frac{\delta V_R}{|\frac{dV}{dr}|_R}$$

Concha Gonzalez-Garcia

• In terms of the mass eigenstates in matter:

$$\binom{\nu_e}{\nu_X} = U[\theta_m(x)] \binom{\nu_1^m(x)}{\nu_2^m(x)}$$

• For constant potential θ_m and μ_i are constant along ν evolution

 \Rightarrow the evolution is determined by masses and mixing in matter as

$$P_{osc} = \sin^2(2\theta_m) \sin^2\left(\frac{\Delta\mu^2 L}{2E}\right)$$

• For varying potential: $\begin{pmatrix} \dot{\nu}_e \\ \dot{\nu}_X \end{pmatrix} = \dot{U}[\theta_m(x)] \begin{pmatrix} \nu_1^m(x) \\ \nu_2^m(x) \end{pmatrix} + U[\theta_m(x)] \begin{pmatrix} \dot{\nu}_1^m(x) \\ \dot{\nu}_2^m(x) \end{pmatrix}$

 \Rightarrow the evolution equation in flavour basis (removing diagonal part)

$$i\begin{pmatrix}\dot{\nu}_{e}\\\dot{\nu}_{X}\end{pmatrix} = \frac{1}{2E}\begin{pmatrix}A - \frac{\Delta m^{2}}{2}\cos 2\theta & \frac{\Delta m^{2}}{2}\sin 2\theta\\\frac{\Delta m^{2}}{2}\sin 2\theta & \frac{\Delta m^{2}}{2}\cos 2\theta\end{pmatrix}\begin{pmatrix}\nu_{e}\\\nu_{X}\end{pmatrix}$$

 \Rightarrow the evolution equation in instantaneous mass basis

$$\begin{split} i \begin{pmatrix} \dot{\nu}_1^m \\ \dot{\nu}_2^m \end{pmatrix} &= \frac{1}{2E} U^{\dagger}(\theta_m) \begin{pmatrix} A - \frac{\Delta m^2}{2} \cos 2\theta & \frac{\Delta m^2}{2} \sin 2\theta \\ \frac{\Delta m^2}{2} \sin 2\theta & \frac{\Delta m^2}{2} \cos 2\theta \end{pmatrix} U(\theta_m) \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix} - i U^{\dagger} \dot{U}(\theta_m) \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix} \\ &\Rightarrow i \begin{pmatrix} \dot{\nu}_1^m \\ \dot{\nu}_2^m \end{pmatrix} = \frac{1}{4E} \begin{pmatrix} -\Delta \mu^2(x) & -4i E \dot{\theta}_m(x) \\ 4i E \dot{\theta}_m(x) & \Delta \mu^2(x) \end{pmatrix} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix} \end{split}$$

• The evolution equation in instantaneous mass basis

$$i\begin{pmatrix}\dot{\nu}_1^m\\\dot{\nu}_2^m\end{pmatrix} = \frac{1}{4E}\begin{pmatrix}-\Delta\mu^2(x) & -4\,i\,E\,\dot{\theta}_m(x)\\4\,i\,E\,\dot{\theta}_m(x) & \Delta\mu^2(x)\end{pmatrix}\begin{pmatrix}\nu_1^m\\\nu_2^m\end{pmatrix}$$

 \Rightarrow It is not diagonal \Rightarrow Instantaneous mass eigenstates \neq eigenstates of evolution

 \Rightarrow Transitions $\nu_1^m \rightarrow \nu_2^m$ can occur \equiv *Non adiabaticity*

• For $\Delta \mu^2(x) \gg 4 E \dot{\theta}_m(x) \left[\frac{1}{V} \frac{dV}{dx} \right]_R \ll \frac{\Delta m^2}{2E} \frac{\sin^2 2\theta}{\cos 2\theta} \equiv \text{Slowly varying matter potent}$

 $\Rightarrow \nu_i^m \text{ behave approximately as evolution eigenstates}$ $\Rightarrow \nu_i^m \text{ do not mix in the evolution This is the adiabatic transition approximation}$

The adiabaticity condition

$$\frac{1}{V}\frac{dV}{dx}\Big|_{R} \ll \frac{\Delta m^{2}}{2E}\frac{\sin^{2}2\theta}{\cos 2\theta} \equiv \frac{2\pi\,\delta r_{R} \gg L_{R}^{osc}}{2\pi\,\delta r_{R}}$$

 \Rightarrow Many oscillations take place in the resonant region

Neutrinos in The Sun : MSW Effect

• Solar neutrinos are ν_e produced in the core ($R \leq 0.3 R_{\odot}$) of the Sun

 $\Rightarrow \nu$ can cross resonance condition in its way out of the Sun

For
$$\theta \ll \frac{\pi}{4}$$
: In vacuum $\nu_e = \cos \theta \nu_1 + \sin \theta \nu_2$ is mostly ν_1
In Sun core $\nu_e = \cos \theta_{m,0} \nu_1 + \sin \theta_{m,0} \nu_2$ is mostly ν_2

If $\frac{(\Delta m^2/\text{eV}^2)\sin^2 2\theta}{(E/\text{MeV})\cos 2\theta} \gg 3 \times 10^{-9}$ \Rightarrow Adiabatic transition * ν is mostly ν_2 before and after resonance * $\theta_m \downarrow$ dramatically at resonance $\Rightarrow \nu_e \text{ component } \downarrow \Rightarrow P_{ee} \downarrow$ This is the MSW effect μ^2 v_{μ} m_2^2 ν_1 v_{μ} ٧e m^2 A_R Α $P_{ee} = \frac{1}{2} \left[1 + \cos 2\theta_{m,0} \cos 2\theta \right]$

If $\frac{(\Delta m^2/\text{eV}^2)\sin^2 2\theta}{(E/\text{MeV})\cos 2\theta} \lesssim 3 \times 10^{-9}$ \Rightarrow Non-Adiabatic transition * ν is mostly ν_2 till the resonance * At resonance the state can jump into ν_1 (with probability P_{LZ}) $\Rightarrow \nu_e \text{ component} \uparrow \Rightarrow P_{ee} \uparrow$ μ^2 v_e v_{μ} m_{2}^{2} V_1 v_{μ} ν e m^2 A_{R} A $P_{ee} = \frac{1}{2} \left[1 + (1 - 2P_{LZ})\cos 2\theta_{m,0} \cos 2\theta \right]$

Neutrinos in The Sun : MSW Effect

Neutrinos from The Sun : The Full Story

$$\begin{aligned} A(\nu_e \to \nu_e) &= A_{Sun}(\nu_e \to \nu_1) \times A_{vac}(\nu_1 \to \nu_1) \times A_{Earth}(\nu_1 \to \nu_e) \\ &+ A_{Sun}(\nu_e \to \nu_2) \times A_{vac}(\nu_2 \to \nu_2) \times A_{Earth}(\nu_2 \to \nu_e) \end{aligned}$$

ν Oscillations: Parameter Plots

• If experiment does not see oscillations:

$$\langle P_{osc} \rangle < P_L \rightarrow$$
 excluded region

- If the experiment detects oscillation \rightarrow allowed region
- For experiments in vacuum, for $2-\nu$ $\langle P_{osc}^{\rm vac} \rangle = \sin^2(2\theta) \langle \sin^2\left(1.27\Delta m^2 L/E\right) \rangle$ is symmetric for $\theta \rightarrow \frac{\pi}{2} - \theta$ \rightarrow old plots in $(\Delta m^2, \sin^2(2\theta))$ plane \rightarrow Each point represents 2 physical solutions • Region for experiments at fixed L and $\langle E \rangle$: $-\Delta m^2 \gg 1/\langle L/E \rangle$: vertical at $\sin^2 2\theta = 2 P_L$ $-\Delta m^2 \ll 1/\langle L/E \rangle \rightarrow \Delta m^2 \sin 2\theta = 4 \frac{\sqrt{P_L}}{\langle L/E \rangle}$ \rightarrow diagonal of slope $-\frac{1}{2}$ in log-log plot. • But P_{osc}^{mat} is not symmetric for $\theta \to \frac{\pi}{2} - \theta$ $\rightarrow \sin^2 2\theta$ is not good
- \rightarrow Use $\sin^2 \theta$ or $\tan^2 \theta$

ν Oscillations: Parameter Plots

• $\langle P_{osc}^{\rm vac} \rangle = \sin^2(2\theta) \langle \sin^2\left(1.27\Delta m^2 L/E\right) \rangle$ is symmetric for $\theta \to \frac{\pi}{2} - \theta$

• P_{osc}^{mat} is not symmetric for $\theta \to \frac{\pi}{2} - \theta$

- If experiment does not see oscillations: $\langle P_{osc} \rangle < P_L \rightarrow$ excluded region
- If the experiment detects oscillation \rightarrow allowed region
- If data at fixed $\langle L \rangle$ and $\langle E \rangle$ (like most laboratory searches) \rightarrow region is open in large Δm^2
- If data at several $\langle L \rangle$ and/or $\langle E \rangle$ \rightarrow region may be closed
- If no matter effects:

 \rightarrow region is symmetric around $\theta = \frac{\pi}{4}$

– If matter effects

 \rightarrow region not symmetric around $\theta = \frac{\pi}{4}$

Summary II

- Neutrino masses and mixing \Rightarrow Flavour oscillations
- Experiments observing oscillations \Rightarrow measurement of Δm_{ij}^2 and θ_{ij}

<u> </u>	*	
Source		$\Delta m^2~({ m eV}^2)$
Solar	Vac Osc	$10^{-11} - 10^{-10}$
Solar	MSW	$10^{-9} - 10^{-4}$
Atmospheric	Vac Osc	$10^{-1} - 10^{-4}$
Reactor SBL	Vac Osc	$10^{-2} - 10^{-3}$
Reactor LBL	Vac Osc	$10^{-4} - 10^{-5}$
Accelerator SBL	Vac Osc	$\gtrsim 0.01$
Accelerator LBL	Vac Osc with some matter effects	$10^{-2} - 10^{-3}$

• For existing sources and set-ups

• If $\theta_{ij} \neq 0$ we can find oscillations with $10^{-11} \text{ eV}^2 \leq \Delta m^2 \leq 1 \text{ eV}^2$