

- I. Standard Neutrino Properties and Mass Terms (Beyond Standard)
- **II.** Neutrino Oscillations
- **III.** The Data and Its Interpretation
- **IV.** Some Missing Pieces and the Meaning of All This

The Data and Its Interpretation

Atmospheric Neutrinos

Reactor and Accelerator Neutrinos at Short Baselines

Solar Neutrinos

Long Baseline Reactor Neutrinos: KamLAND

Fitting all Together (?)

Sources of ν 's

ν Interactions

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per}\,\text{cm}^2 \,\text{per}\,\text{second}$$
 and $\langle E_{\nu} \rangle = 1 \,\,\text{GeV}$

• How many interact?

$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human} \qquad (M \times T \equiv \text{Exposure})$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$T^{\text{human}} \sim \text{Ton} \times \text{year}$$

 $N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1$ interaction per lifetime

 \Rightarrow Need huge detectors with Exposure \sim KTon \times year

Atmospheric Neutrinos

Atmospheric $\nu_{e,\mu}$ are produced by the interaction of cosmic rays (p, He ...) with the atmosphere

Concha Gonzalez-Garcia

[not to scale]

down-going

2. H

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

• Total Rates for Contained Events

Juan's Figure

 χ^{2}_{min} =37.8/40 d.o.f χ^{2}_{min} =49.2/40 d.o.f $\rightarrow \Delta \chi^{2}$ =11.4 χ^{2}_{min} =52.4/40 d.o.f $\rightarrow \Delta \chi^{2}$ =14.6

3.4 σ to ν decay 3.8 σ to ν decoherence

First dip observed in data cannot be explained by alternative hypotheses

Atmospheric *v* **Oscillations: Parameter Estimate**

$$\langle P_{\mu\mu} \rangle = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{2E}$$

$$\sim 0.5 - 0.7$$

$$\Rightarrow \sin^2 2\theta \gtrsim 0.6$$

• From Angular Distribution:

For $E \sim 1$ GeV deficit at $L \sim 10^2 - 10^4$ Km

$$\begin{split} \frac{\Delta m^2 (\mathrm{eV}^2) L(\mathrm{km})}{2 E (\mathrm{GeV})} \sim 1 \\ \Rightarrow \quad \Delta m^2 \sim 10^{-4} - 10^{-2} \mathrm{eV}^2 \end{split}$$

Atmospheric *v* **Oscillation Analysis**

• Three possible oscillation channels: $\nu_{\mu} \rightarrow \nu_{X}$ $X = e, \tau$, sterile

 $u_{\mu}
ightarrow
u_{e}$

The angular distribution for Contained

Not enough up-down asymmetry for μ 's Excess of e-like events Ruled out

Matter effects \Rightarrow Flatter distribution for $\nu_{\mu} \rightarrow \nu_{s}$ Not good fit to data

Atmospheric ν **Oscillation Solution:** $\nu_{\mu} \rightarrow \nu_{\tau}$

ν Oscillations: Lab Searches at Short Distance

• In laboratory experiments ν source: Accelerator or Nuclear Reactor

 $\mu^+ \to e^+ \nu_e \overline{\nu_\mu}$

LSND

 $\pi^+
ightarrow
u_\mu \mu^+$

- The only short distance signal for oscillation: L = 30 m with $\langle E_{\nu} \rangle \sim 30$ MeV
- Used the proton beam of Los Alamos $p + Target \rightarrow \pi^+ + X$
- observed $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ with probability $\langle P_{e\mu} \rangle = (0.26 \pm 0.07 \pm 0.05)\%$

• *Karmen* which searched for the same signal and did not observe oscillations. *MiniBoone* in Fermilab is running to solve this.

Summary of $\nu_{\mu} \rightarrow \nu_{e}$ at Short Baseline

- Reactor disappearance experiments \Rightarrow Lower E and longer L \Rightarrow are more sensitive to lower Δm^2
- Accelerator appearance experiments
 ⇒ higher E shorter L more precision

 ⇒ better limits on mixing
- To reach small $\Delta m^2 \gtrsim 10^{-4}~{
 m eV^2}$
 - \Rightarrow very large L and intermediate E
 - \Rightarrow Long Baseline Experiments at Accelerators:
- To reach smaller $\Delta m^2 \gtrsim 10^{-5} \text{ eV}^2 \Rightarrow$ Long Baseline Experiments at Reactors

ATM Test: Long Baseline Experiments

K2K	$ u_{\mu}$ at KEK	Kamiokande	L=250 km
MINOS	$ u_{\mu}$ at Fermilab	Soundan	L=730 km
Opera/Icarus	$ u_{\mu}$ at CERN	Gran Sasso	L=740 km

K2K confirms

MINOS: Precision measurement

CNGS: OPERA/ICARUS τ appearance searches

Solar Neutrinos: Fluxes

• The Sun shines converting protons into α , e^+ and $\nu's$

 $4 p \rightarrow {}^{4}He + 2 e^{+} + 2 \nu_{e} + \gamma$

 $4m_p - m_{^4He} - 2m_e \simeq 26~{
m MeV}$ Thermal energy mostly in γ

• Two major chains of nuclear reactions

pp chain:

CNO cycle:

• Present Solar Model \Rightarrow *pp*-chain dominates by 99%

• Most Relevant Fluxes :

- At SK, SNO and Chlorine, ⁸B neutrinos: 20% accuracy in total flux At $1/10^5$ spectrum independent of solar physics
- At Ga, pp neutrinos : Best determined by SSM (1%)
- At Chlorine, also ⁷Be neutrinos

		Solar N	eutrinos:	Data		
	Experiment	Detection	Flavour	E_{th} (MeV)	$\frac{\text{Data}}{\text{BP00}}$	
radio-	Homestake	$^{37}{ m Cl}(u,e^-)^{37}$	Ar ν_e	$E_{\nu} > 0.81$	0.35 ± 0.06	
chemical	Sage + Gallex+GNO	71 Ga $(\nu, e^{-})^{71}$	Ge ν_e	$E_{\nu} > 0.23$	0.55 ± 0.05	
real time	$Kam \Rightarrow SK$	ES $\nu_x e^- \rightarrow \nu$		$E_e > 5$	0.46 ± 0.09	
	SNO	CC $\nu_e d \rightarrow pp d$	$e^- \nu_e$	$T_e > 5$	0.315 ± 0.02	
		ES $\nu_x e^- \rightarrow \nu$	$\nu_x e^- u_e, u_{\mu/ au}$	$T_e > 5$	0.44 ± 0.06	
		NC $\nu_x d \rightarrow \nu_x$	$d \qquad u_e, u_{\mu/ au}$	$T_{\gamma} > 5$	1.03 ± 0.09	
WSS SING SAGE GA	LLEX NO HOMESTAK	SNO NC SNO NC SK E SNO CC	Experiments r Deficit is ener Deficit disapp	neasuring gy depende ears in NC ${}_{8B}^{SNO,NC} = \Phi_{8B}^{SSM}$	mostly ν_e find ent $r \Rightarrow Confirmations = 1.03 \pm 0.09$	l deficit ion of S
Ū	EXPERIM	ENT				

Solar Neutrinos: Flavour Conversion Evidence

SK and SNO measure $\Phi_{^{8}B}$ in different reactions

ES
$$\nu_x e^- \to \nu_x e^ \Phi_{^{8}B}^{^{SK,ES}} = (2.35 \pm 0.08) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

CC $\nu_e d \to ppe^ \Phi_{^{8}B}^{^{SNO,CC}} = (1.59 \pm 0.11) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$
NC $\nu_x d \to \nu_x d$ $\Phi_{^{8}B}^{^{SNO,NC}} = (5.21 \pm 0.47) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$

* In the SSM with SM interaction all results should be equal

Solar Neutrinos: Flavour Conversion Probabilities

• Fitting the observed rates:

Solar Neutrinos: Oscillation Solutions

CL

3σ

99

95

90

Allowed regions by Fit to Total Rates: Cl, Ga, SK and SNO CC

Different regimes can explain the Total Rates All give similar $\langle P_{ee} \rangle_L$, $\langle P_{ee} \rangle_I$, $\langle P_{ee} \rangle_H$ Need more observables to discriminate

Concha Gonzalez-Garcia

Energy Dependence of P_{ee} for Different Solutions

Concha Gonzalez-Garcia

Neutrinos

• Real Time experiments can also give information on Energy and Direction of $\nu's$ and can search for Energy and Time variations of the effect ν 's come from the SUN No Energy Distorsion

• From SK (Confirmed by SNO)

Solar Neutrinos: Oscillation Solutions

Terrestrial Test of LMA: KamLAND

- Search on $\overline{\nu_e}$ at L~ 180 km reactors, $E_{\overline{\nu}} \sim \text{few MeV}$: $\bar{\nu}_e + p \rightarrow n + e^+$
 - -K. Eguchi et al., hep-ex/0212021 145 days of data.

-Analysis threshold : $E_{\rm vis} = E_{\nu} - (M_n - M_p) + m_e \simeq E_{\nu} - 0.8 \text{ MeV} > 2.6 \text{ MeV}.$

• 54 Observed events of 86.8 ± 5.6 Expected (1 background).

 $R_{\text{KamLAND}} = 0.611 \pm 0.085 (\text{stat}) \pm 0.041 (\text{sys})$

Energy spectrum observed

Test of LMA: KamLAND Oscillation Analysis

Analysis of $\bar{\nu}_e \not\rightarrow \bar{\nu}_e$: $P_{\bar{e}\bar{e}} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$

- No matter effects: $\theta \equiv \frac{\pi}{2} \theta$
- Disappearance: No information about active or sterile osc.

Two Neutrino Oscillations: Summary

- How to fit all this together?
- 3 oscillation signals in 3 different scales

 $\Delta m^2_{\rm SOLAR} \ll \Delta m^2_{\rm ATM} \ll \Delta m^2_{\rm LSND}$

- Mixing of $\nu_e, \nu_\mu, \nu_\tau \rightarrow 2$ mass diff \rightarrow Explain only two evidences: For example Solar + Atmos
- Theorists have tried hard to fit LSND in:
- Adding a fourth sterile neutrino
- Breaking CPT...
- ... but nothing works well
- The Naked True:

If Miniboone finds a signal we have no good theory of what to do Ergo I am going to ignore LSND

Solar+Atmospheric+Reactor+LBL 3v Oscillations

 2ν oscillation analysis $\Rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \ll \Delta M_{atm}^2 \simeq \pm \Delta m_{32}^2 \simeq \pm \Delta m_{31}^2$ Generic 3ν mixing effects:

- Interference of two wavelength oscillations
- Effects due to θ_{13}
- Difference between Inverted and Normal
- CP violation due to phase δ

In Present Data:

2 wavelengths Unobservable θ_{13} Only a limit N versus I Below sensitivity CP violation Unobservable

• But all these 3ν effects within reach of planned experiments

Global Analysis: Three Neutrino Oscillations

Best Fit: $\Delta m_{21}^2 = 7.1 \times 10^{-5} \text{ eV}^2$ $\tan^2 \theta_{12} = 0.42$ $\sin^2 \theta_{13} = 0.006$

$$\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$$
$$\tan^2 \theta_{23} = 1.0$$

Global Analysis: Three Neutrino Oscillations

The emerging:
$$|U_{\text{LEP}}| = \begin{pmatrix} 0.73 - 0.89 & 0.44 - 0.66 & < 0.24 \\ 0.23 - 0.66 & 0.24 - 0.75 & 0.51 - 0.87 \\ 0.06 - 0.57 & 0.40 - 0.82 & 0.48 - 0.85 \end{pmatrix}$$
.

with structure

$$|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \lambda \sim 0.2 \\ \epsilon \lesssim 0.2 \end{pmatrix}$$

very different from quark's
$$|U_{\text{CKM}}| \simeq \begin{pmatrix} 1 & \mathcal{O}(\lambda) & \mathcal{O}(\lambda^3) \\ \mathcal{O}(\lambda) & 1 & \mathcal{O}(\lambda^2) \\ \mathcal{O}(\lambda^3) & \mathcal{O}(\lambda^2) & 1 \end{pmatrix} \qquad \lambda \sim 0.2$$

• The Data:

$$\begin{split} \Delta m_{31}^2 &\sim 2.4 \times 10^{-3} \, \mathrm{eV^2} \\ \tan^2 \theta_{23} &\sim 1.0 \\ \Delta m_{21}^2 &\sim 7.1 \times 10^{-5} \, \mathrm{eV^2} \\ \tan^2 \theta_{12} &\sim 0.42 \\ \sin^2 \theta_{13} \lesssim 0.05 \end{split}$$

- U_{LEP} is very different from U_{CKM}
- If MiniBooNE confirms LSND, we lack an explanation
- Where are we going? What is the meaning of all this? Tomorrow