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The exact expression for correlation length in the one-dimensional Bose gas is obtained at 
any value of coupling constant and temperature. 

I. Introduction 

Recently the method  of  calculation o f  the current correlat ion funct ion for the 
one-dimensional  Bose gas was created [1-3].  In this paper  we consider  the one- 
d imensional  Bose gas. The hamil tonian o f  the system is 

fo H =  d x ( O ~ g t + O ~ + c ~ + ~ + ~ - h g ~ + g ~ ) ,  

[ ~ ( x ) ,  ~ + ( y ) ]  = a ( x - y ) .  (1) 

Here L is the length o f  a box, c a coupl ing constant  (c > 0) h a chemical  potential  

( h > 0 ) .  In the the rmodynamica l  limit L-->~ and N - > ~  ( N  the number  o f  the 
particles), p = N /  L fixed. 

Exact e igenfunct ions o f  H were constructed in [4]. The model  was embedded  in 

a quan tum inverse scattering method in [7-11].  The zero- temperature  case was 
solved in [4, 5]. The thermodynamica l  propert ies o f  the system were evaluated in 
the paper  [6]. 

Let us consider  an N-par t ic le  wave funct ion with periodical  bounda ry  condit ions.  

The system o f  equat ions for  the permitted values o f  particles momen ta  looks like 
[4, 6] 

N 

AjL+ E (9(Aj--Ak)=27rnj .  (2) 
k = l  
k ¢ j  

Here O(A) = i In {(A + ic) /(A - i c ) } -  7r, nj is the set o f  integer numbers  (nj ¢ nk when 
j ¢ k, a consequence  o f  the Pauli principle [14]). It should be ment ioned  [6] that 
there exists a one- to-one correspondence  for any set {n} and eigenfunctions o f  the 
hamil tonian (1). Using the symmetry  (Bose) o f  the wave function,  we can put 

nj+, > nj, aj+, > a~. (3) 
766 
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Taking the sum of all equations in (2), we find 

N N 

L R  =2~- )~ nj, g = ~ Aj. (4) 
j = l  j = l  

Here R is the total momentum of the system. Further we shall consider the particles 
in the center-of-mass system, i.e. R = 0. Eq. (4) then implies 

N 

Z nj = 0. (5) 
j=l 

In the thermodynamic limit eq. (2) can be rewritten in the form [6] 

2trot(X) = 2~'[o(X) + ph(X)] = 1 + f~°~ K(A, g ) p ( ~ )  d g ,  _ (6) 

aO(x,/z) 2c 
K(A,/~) - 0----~ - c :+  (A -/~)2.  (7) 

Here p(A) is the destribution function of particles and ph(A) is the distribution 
function of holes (the exact definition of this function see in [6]) and pt(A) is the 
distribution of vacancies. 

The function p(A) is a positive bounded function. The physical density p is 

N f+oo 
0<  p = -~=  j_oo p(A) dA. (8) 

It can be shown that 

~1  <~ pt(A) ~<2-~( l + 2 p  ) 2 ¢ r  . (9) 

This estimate can be derived from the restriction on the permitted values of the 
particle momenta in the Dirac sea [12]: 

Now we want to calculate the grand canonical partition function of the model. Let 
us consider 

Z = t r e  - n / T =  ~ ZN, (10) 
N = 0  

where 

1 ~ ~ . . .  ~ ( {n} le_mTl{n} )  
ZN -- N !  n;=-oo ,2=-o0 ,N=-oo 

~ m  

N! rll = - o o  n2 = - c t )  n N = - - o o  
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N 
Here EN =~j= l  (A~-h )  and I{n}) is the eigenfunction of the hamiltonian which 
corresponds to the set {n}. Using (3), (5) we can rewrite (11) in the form 

. . .  

nl =--oo n 2 = n t + l  /1N = tIN_I+ 1 

: ~ ~ " ' "  ~ e -~'¢T. (12) 
n2,1=l n3,2=1 nN, N 1~1 

Here in the last term we pass to the new variables 

nj+,.j=-n~+,-n~, Y. nj=O. (13) 

Let us calculate the ratio of  the number of  vacancies and number of particles (in 
the neighbourhood of  given momenta Aj) in terms of microscopic and macroscopic 
variables: 

n of vac. n of vac. _ pt(hj) 
n of pa----~- nJ+l'J' n of  part p ( h j )  " (14) 

By means of this formula we can pass now from microscopic variables nj to 
macroscopic pt(h), p(h) .  As mentioned by Yang and Yang [6] the given p(h)  does 
not define {n} in a unique way, for at the fixed p(h)  there exists 

[p,(A) dA]! 
r l  

kl [p(A) dA]![ph(A) dA]! 

different configurations {n}. Taking into account this fact and formula (14) we can 
rewrite (10), (12) for the large system (L~oo)  in the form of a functional integral 

where X is 

X=LI+f(A2-h)P(A)dA-LTI+~o [ p t ( A ) I n p t ( A ) - P ( A ) I n p ( A ) _  

- ph(A) In ph(Z)] dZ. 

When L tends to infinity we may evaluate the integral in (15) by the method of 
steepest descent. We should minimize the functional X subject to the constraint (6) 
(g2X > 0, see [6]); this procedure leads to the equation which defines the state of 
the thermodynamical equilibrium of the model: 

T ¢'+~ 
e(A) = A 2 -  h - ~--~ J-o~ K(A,/z)  In [1 +e  -'(~)/T] d/z. (16) 

Here e(A)-= Tln[ph(A)/p(A)] and T is the temperature. The Fermi factor O(A) 
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will play an important role below: 

1 
O(A) = 1 + exp {e (A) / r}"  (17) 

Let us emphasize that the state of thermal equilibrium is not the pure one (it is not 
the eigenstate of the hamiltonian). This state is a mixture of the eigenstates. Let us 
denote by [q)T) one of these eigenstates. 

In our paper we consider the correlation function of the currents j ( x ) =  
'/'+(x) ~(x): 

tr [e-'/9(x)j(o)] 
(j(x)j(O)) = tr [e -H/r] (18) 

For the large system we can again express the trace as the functional integral and 
evaluate it by the method of steepest descent: 

(¢br[j(x)j(O)14~r) 
(j(x)j(O)) = (6r16r) (19) 

Here t(hr) is one of the eigenstates of the hamiltonian which corresponds to the 
state of  thermal equilibrium. In [1] we proved that the right-hand side of  (19) does 
not depend on the particular choice of [q~r). 

In the frame of perturbation theory the correlation functions of the model were 
studied in [13]. 

The right-hand side of  (19) was calculated in [1-3] in the form of the series 

( ( j ( x ) j (O) ) )  = ( : j ( x ) j ( O ) : ) - - ( j ( O ) )  2 = ~ F k ( X ) ,  
k=2 

Here 

(:j(x)j(O):) = (j(x)j(O)) - -  3(x)(j(O)) . 

( j (0) )=  p(X) dA = p. 

The first two terms of  the decomposition are equal to 

1 I ~  I ~  
F2(x)=-~--~2 _ dA, (o(A,)O(A,) _ dA2 (O(AE)O(A2) 

\ A 1 - A 2 - i ¢ / L  Al--~2 J eXP(X"x2)' 

±I 2 F a ( x ) = 2 " r r 3 -  {jO, ~(Aj)O(A')dA'~[p(--hBh-22)']2JL A , - A /  J 

X ( A , -  A2 + ic~(A3-  A2 +A3-  A,~ exp {xp(A,, A2)} 
\ A , - A 2 - i c / k A 3 - A ,  A3-A2/ ( A a - - A T + ~ - - A - ~ 3 + i c ) "  

(20) 

(21) 

(22) 
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The principal value of  the integral must be taken in (22). The statistical weight to(A) 
is 

lI+ 
_ K(A,/z)O(/z)  d/z j ,  

0 <  ~o(A) < 1. (23) 

The function p(A1, A2) is 

P(A,,A2)=-i(A,-A2) + f+oo dtO(t)P(t,A,,A2). (24) 
. i  

The function P(t, A~, A2) is defined in a unique way by the dressing nonlinear 
equation 

(Al- t+~(A2-t- iC~exp{f+_~K(t ,s)O(s)P(s ,A, ,A2)ds}  
1 +2~-P(t, A1, A2) = ~1-- t-- i C / \ A  2 -  t+ ic/ 

(25) 

and by inequality Re P(t, A~, A2)~0. Its domain of  definition is Im A1 = Im A2: 
I m t  = 0. A detailed investigation of eq. (25) and function P will be given in the 
next section. 

We shall further need t he  expression for the correlation function at zero tem- 
perature. Explicitly it is given in [2, 3]. At T= 0 eq. (16) becomes 

= K(A, ~)eo(/~) d/z. (26) 
2 7 / "  _ q  

The bare Fermi momentum q is defined in a unique way from 

co(q) = O. (27) 

(We shall use further the subindex "zero" for the quantities at T = 0.) The function 
co(A) is negative when - q  <A < q and is positive when A > q, A < - q .  Using this 
property it is easy to take the limit T - O  in (21)-(25) writing 

f+~f(t)O(t) f_' a t .  f(t) dt. (28) 
- -  q 

2. Integral equations 

Let us consider the integral operator / (7 :  I f f  is any normalized function then 

(gTf)( ,~)  = K(,~, . ) O ( . ) f ( . )  d . .  (29) 

To get some estimates on its eigenvalues we construct the operator /~ with the kernel 

~:(a, . )  -- ~ K  (,~, . )  O./-~). 
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The ope ra to r /~ r  is similar to the operator/~.  It can be shown that 

f20 t )  1 2zrO(X)/~>2"~ -o0 dX dtzf(X)f(tz)/~(X, jz).  (30) 

Here f is an arbitrary function. Thus from (30) and (9) we get the estimate on the 
eigenvalues IKI 

0<!lgl < No (31) 
2or c + 2 p  " 

It follows that the eigenvalues of /~T range between 0 and 1, or more precisely, 
they are different from 1 with a gap of order (1 + 2 p / c )  -~. Using these properties 
o f / ~ r  we can prove that the solution of the integral equation (25) exists. 

Let us rewrite (25) in the form 

l + 2 ~ r P ( t ) = a ( t ) e x p { ( K r P ) ( t ) } ,  Re P(t)~<0.  (32) 

Here la(t)[ = 1. Define further the sequence P,: 

Po=O,  

P,+,( t )  = exp { (KrP , ) ( t ) }  2zt 

(n =0,  1 , . . . , o o ) .  (33) 

We shall prove now that this functional sequence converges. First we show that if 
Re P, ~< 0 then Re P,+I <~ 0. Clearly, we have 

la(t) exp {/~rP,}l <~ 1 ~ Re a( t )  exp {/~rP,} <~ 1. 

Thus, Re P,+~ ~< O. Here we have used the positiveness of the kernel of  the operator 
/~T. NOW we can prove 

1 A 
IP.+~(t) - P. (t)l <~-f-~(Kr[P. - P._l[) ( t ) .  (34) 

Subtract 

from (33) to obtain 

P. ( t )  = ~ exp {(/~TP,-,)(t)} 1 
20" 

P.+,( t) - P.(  t) = a( t) [e(g~.)t,) - e(g~._,)(o] (35) 
2~r 

Let us use the well-known inequality 

lez,-eZ21 < Izl-z21. 
Here zl and z2 are two complex numbers from the left half-plane Re z~.2 <~ 0. It is 
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now possible to complete the proof  

1 g:#, e,~o_,l IP.+l(t)-P.(t)[=~--~le . -  

1 A A 
<~ ~-~[Kr( P~ - P,,-,)I ~ I  ( KTIP. - P,,_d)(t) .  

Since the eigenvalues of  (1/27r)/¢r are less than unity but greater than zero (31), 
the sequence 1°, converges in L2 and its limit satisfy (25). It should be mentioned 

that if a(t) is real then P(t) is real also. 
The uniqueness theorem can be proved similarly. Assume that P1 and P2 are two 

different solutions of  (25). Subtracting one from the other we obtain 

IPl(t) - P2(t)l ~ I ( R T I P I -  P~l)(t) • 

Now we multiply this relation by O(t)lP1- P21 and integrate it to obtain 

f + f  f2(t) l I + ° ° d s f ~ d t f ( s ) f ( t ) K ( s , t ) < ~ O  dt - 2--~ 

f (  t) : ~/-~ t)]Pl( t ) -  P~(t)l, 

in contradiction to (30) ; so P1 = P2. 
Therefore if a(t) = 1 then P = 0. Notice that if la(t)] in (32) is less than unity the 

uniqueness theorem and the theorem of existence can be proved similarly. It means 
that the function P can be analytically continued with respect to A. In the next 
section we shall need the analytical continuation with respect to A2 into the upper  
half-plane and with respect to A1 into the lower one. It follows from 

( t+ i c ~ ( A 2 - t - i c )  
la(t)l~ 1, a ( t ) =  -~ - t - -~] \~2- - f -+~c] '  

that P could be analytically continued without singularities into the domain 

I m t = O ,  I m A l ~ O ,  ImA2~>O. (36) 

We want now to investigate some other properties of  the P-function. Let us prove 
that in the domain of definition 

1 
IP(t, A1, A2)I ~ - - .  -< (37) 

"/7" 

Clearly 

1 e(~rp)(t)l+ 1 1 
[P( t)l<<- ~-~la( t) 2zr<~ ~ • 
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This inequali ty and (9) give 

f+~dtO(t)P(t'3`"3`2)-<l f ~  ~ d t O ( t ) < - 2 p ' _  ~--¢r _ (38) 

This means that  P(3`1, 3`2) slightly differs from -i(3`1-3`2)(P(3`1, 3 ,2)~- i (A1-3`2) ) .  
The rest o f  the propert ies  of  the P-funct ion we shall enumerate  without  proof:  
(i) if a(t) ~ 1, t, 3`1, A2 are finite, then Re P(t ,  3`1, 3`2) # 0; 

(ii) /3(t, 3`1, A2) = P(?, ~2, X1), P(3`1, A2) =p(X2, ~1); 
(iii) P( t ,  & A ) = 0 ;  
(iv) P(-t, -A1, -3`2) = P(t, 3`2, 3`1); 
(v) when 3`1 = c~, 3`2 = a (Im a > 0, Im t = O)P(t, (~, a) is real since a(t) is real; 

p(6, a) is real; 
(vi) for  c--> oo 

1 ( 
P(t ,  3`l, 3`2)=z-- (3` l -3`2)  1+ p - (A1-3`2)2+O , (39) 

17r¢ 

p(3`) = l + c P  O ( A ) + O  , (40) 

P(3`1, 3`2) = - i ( 3 ` , -  3`2)(1 + 2 P )   41, 
2 

We shall use these propert ies  to calculate the asymptotics of  correlator  in the 
next  section. 

To conclude  this section let us analyze the equat ion for e(3`) (16). This equat ion 
has a unique solut ion [6] with the propert ies 

e(3` )= e(-3` ) , (42) 

~(~) = e (A) ,  (43) 

e(A) ) 3`2. (44) 
A ~ ± c o  

e(3`) has no singularities on the real axis. 
Let us try to cont inue e(3`) into the upper  half-plane. It is easily seen that with 

the help o f  (16) we can cont inue e(A) up to Im A = c. Within this region e(3`) has 
the asymptot ic  3`2 when 3  ̀--> +oo. At Im A = c the kernel K becomes singular. If  we 
want to cont inue  e(A) further  than Im A > c it is sufficient to shift the contour  of  
integration into the upper  half-plane 0 < Im/~ < c. It is clear that we can do so up 
to the point  a, where 

O-l(a)=l+e~(~)/r=O, I m a > 0 .  (45) 

The funct ion e(3`), however ,  can be cont inued further  with the help of  (16). We 
thus obtain that  the first singularity of  e(3`) is a + ic (the contour  o f  integration is 
locked by singularities of  In (1 + e x p { - e ( A ) / T } )  and K(3`,/z)).  It is easy to prove 
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that the solution of  (45) necessarily exists. In fact, if e(A) is continued into the 
complex plane so that l + e x p  { e ( a ) / T }  has no zeros we could continue e(A) into 
an entire complex plane without singularities with the help of (16). The function 
e(A) would be an entire function with polynomial asymptotics A 2. It is possible 
only if e(A) is polynomial. But the polynomial does not satisfy (16). So the zeros 
of O-~(A) exist and they form the quadrangle 

a , - a ,  6 , - 6 ,  Im a > 0  (when T > 0 ) .  (46) 

The function e(A) could be continued up to these zeros without singularities. This 
property will help us in calculating the asymptotics of correlation function. 

The zero a necessarily lies in the complex plane. On the real axis e(A) is real 
and O-~(A) has no zeros. 

The statistical weight to(A) also could be continued into the complex plane. Its 
singularity nearest to the real axis is A = a + ic. 

The analytical continuation of these functions has the properties 

~(a)=~(~), ~(-a)= ~(a), 

oS(A) = w(A), to(-A) = to(A). (47) 

3. Asymptotic behaviour of the correlation function 

We now consider 

( ( j (x) j (O)))  = ( : j ( x ) j ( O ) : )  - (j(0)) 2 . (48) 

The first term is given by (21). To analyze this expression when x tends to infinity 
we shall shift the contour of integration with respect to A~ into the lower half-plane 
and with respect to A2 into the upper one. The nearest barriers, when shifting, are 
the singularities of the Fermi factor O(A) which are situated at the points a, - a ,  
6, - 6 .  These points are simple poles of O(A): 

T 
O(A)I*~ ~ e ' ( a ) ( A - a ) '  e~(~)/r =--1 " (49) 

The contribution of these poles to F2(x) is 

-21 oJ(a ) 2(~ I m a  - c ~ ( p ( 6 ,  a )~2 exp { x p ( 6 ,  a )} (50) 
I ]e-~a) I m a + c / \ 2 I m a /  

+ 2 T  2 Re Lke (~)/ \ 2 a + i c / \  2ce e x p { x p ( - a ,  . 

To calculate the contribution of other singularities to (21) we must shift the contour 
still further from the real axis. This will lead to the expressions decreasing with 
respect to x faster than (50), (51). The considerations based on the perturbation 
theory show us that (51) decreases faster than (50) when x ~  ~ .  
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The asymptotics of  the first term (21) at large distances are 

((j(x)j(O))) ~ e -x/~ , (52) 

where rc is the correlation length 

l = - P ( 6 q a ) = 2 I m a - I ~  ° ° d t O ( t ) P ( t ' 6 ' a ) > ~ 2 I m a > ~ O ' r c  (53) 

It should be noted that the function p is real and 

- f ~  °°dtO(t)P(t,6,c~)>~O_ 

is positive. 

Thus we have analyzed the first term of  the sequence for the correlation function 
[1]. The tracing of the others allows us to make the conjecture that the expression 

1 
r~= p(&, a )  (54) 

is correct for any value of  the coupling constant. This is the principal formula of  
our work. 

Let us analyze now different special cases. Consider the correlation length at 
T ~ 0  (the point T = 0  is the phase transition point). It is easy to show that the 
solution of  the equation 

l~-l(og) = 0 ,  e(O~) = ilrT, (55) 

is 

i~T 
ct = q + e~( qr-""-~ ' (56) 

where qr is defined by e ( q r ) = 0 ,  qr>O (as T-~O, qr~q) .  Thus when T ~ 0  the 
difference between a and 6 becomes small. The factor a(t) in (32), (25) tends to 
1, so the solution of (32) is P(t, (~, a)~O. More precisely 

T 
P(t)= )F(t ) ,  

e~(q 

where F(t) satisfies the linear equation 

if_ K(t, s)F(s) ds F ( t ) - -2-~ q 

The correlation length tends to infinity: 

1 27rT T ['q 

r~ = e'o(q) +e-~q) J_q 

2C 
(57) c 2 + ( t - q ) 2 "  

F(t) dt e~(q)Ll+~--~ F(t) dt . 
q 

(58) 
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The coefficient on the right-hand side has a distinct physical sense; the velocity of 
sound. So 

/9 

rc - 2~-T" (59) 

The velocity of sound v is the derivative of physical energy with respect to physical 
momentum on the Fermi surface [5]: 

- - -  = F ( t )  d t  (60) 
v dko(A) A=q dA ~=q 27r _q 

The physical momentum ko(A) is 

S ko(A) = A + ~9(A -/~)po(/Z) d/z. 
- q  

Substituting (60) into (58) we obtain (59). 
The same result was obtained in [13]. The correlations disintegrate when T ~  oo 

(see the appendix). 
Let us consider now the limit c-~ oo. We have 

e(A)= A2-- Aq-O(cl--~) , A > 0 ,  A =  h+2~ ' c  

Here ~ is the pressure [6]: 

~ = 2--7 T f  +°°daln(l+e-~)/r) _ 

Changing K-+2/c it is easy to find the 1/c series expansion of A. We have 

a=~/A+i~rT= 4h+2-~+irrT, I m a > 0 .  
C 

Substituting this expression into (53) and (41) we get 

l = 2 i m a  l + c P  +-c-~4(Ima) 2 
re 

Let us emphasise that in the strong coupling limit the two terms (50) and (51) begin 
to compete. The term (51) contains an additional decreasing factor 
exp{-8p(Re  a)2x/c2}. For c=oo the sum of the two terms (50) and (51) gives 
asymptotics and contains oscillations [1]. 

For c = oo the correlation function is given by the following explicit formula: 

1 Ff+oo eiAXdx ]2 
((j(x)j(O))) = - ~ 2 L J _ o o  1 +exp {(A z -  h)/T} " 
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4. Asymptotic behaviour of the correlator at zero temperature 

At zero temperature the correlation function 

((j(x)j(O)))= ~ F°g(x) (61) 
k = 2  

was calculated in [2, 3] in the form of a series. Let us write down its first term: 

FO(x ) 1 q q h2+ ic p(hl,  h2) eXp(x,,a:) = dA, to(A,) dA2 to(A2) 
4~ "2 -q -q X 2 - i c / L  A,-A2 

(62) 

We can find F°(x)  from (22) using the rule (28). Let us analyze this expression 
when x tends to infinity. Integrating by parts we shall get the leading term of the 
asymptotics: 

to2(q) 1 
2~r2 x2, (63) 

taking into account that p(;t, A)= 0. Among the correction terms we have 

1 
const - -  e xp(q ' -q)  (64) 

X 2 

This term contains oscillations. When 0 < c < co, Re P < 0, so this term decreases 
exponentially with respect to x. When c = co, Re P = 0 and (64) should be added to 

the leading term (63). So, when c = co the asymptotic contains oscillations. This fact 

explains the results of [3]. If  we analyze the rest of  the terms of (61) we shall see 
that the asymptotics of  the correlator at 0 < c < co are equal to 

a 
((j(x)j(O))) , - -  

x~oO X 2 ' 

where a is the dimensionless constant. This formula was previously obtained in [13]. 

We see that the representation of the correlation function which has been obtained 
in [1-3] is very effective. Really, to calculate the asymptotic behaviour of the 
correlator it is sufficient to deal with its first two terms. 

We thank V. Popov for useful discussions. 

Appendix 

Let us analyze the behaviour of the correlation function at the high-temperature 
limit T ~  co. It is difficult to investigate the expression (54) in this limit, so we shall 

solve here a more simple problem. We shall fix the distance x and study (21) when 
T tends to infinity. 
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To do this, let us rewrite eq. (16) using the following notation: 

¢(X)= ~(x) X= a T ' ~fT' fi = v ~ '  

c / ~ = h  /~ (~t,//) - 27 (A.1) 
c =  v"T '  T '  ~2+ (~_/£)e  • 

1 t+oo 
J ~ / ~ ( L  #) [n [1- exp {-~(~)}] dE. (A.2) ~ ( i )  = i 2 -  h -2---~ _ 

As T ~ o o  we have ~-~0, / ~ 0  and /~(i , t /)*2~rS(i-fi) .  Thus (A.2) gives (case 
c = 0 in [6]) 

O(A ) - 1 - e -a~/r. (A.3) 
1 +exp  {e(X)/T} 

This leads to the following: ~o(A)--> e -1, P(t, ,~1,/~2) - '> 0 (see (25)) and 

T _ Tx2/2 (A.4) 
F2(x) r-,~o' 41re 2 e . 

So we find that correlation of the currents ((j(x)j(O))) disintegrates at a distance 
of  order x - 1/~/T. It should be noted that expression (A.4) is correct for not very 
large x (the pre-asymptotic region). When x tends to infinity F2(x) decreases 
exponentially (see (52)). But for high temperatures correlations disintegrate now in 
the pre-asymptotic region. 
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