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Abstract

The equivalence of the discrete isotropic Heisenberg magnet (IHM) model and the discrete nonlinear Schrodinger
equation (NLSE) given by Ablowitz and Ladik is shown. This is used to derive the equivalence of their discretization with
the one by Izgerin and Korepin. Moreover a doubly discrete IHM is presented that is equivalent to Ablowitz' and Ladiks
doubly discrete NLSE. © 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The gauge equivalence of the continuous isotropic
Heisenberg magnet model and the nonlinear Schrodi-
nger equation is well known [7]. On the other hand
there are severa discretizations of the nonlinear
Schrodinger equation in literature (e.g. [1,11,5,12)).
In particular there are two famous versions with
continuous time. One introduced by Ablowitz and
Ladik [1] (from now on called dNLSE,, ) and one
given by Izgerin and Korepin [11] (from now on
referred to as dNLSE ) (see also [7]). The second
can be obtained from the discrete (or lattice) isotropic
Heisenberg magnet model (dIHM) with dight modi-
fication via a gauge transformation [7].

* Phone: +49-30-314 25784; fax: +49 - 30 - 314 21577,
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In this paper the gauge equivalence of the diIHM
model and the dNLSE,, is shown. In fact thisisin
complete analogy to the continuous case. The equiv-
alence of the two discretizations of the nonlinear
Schrodinger equation is derived from this. An other
interesting relation between the discrete Heisenberg
spin chain and the dNLSE,, should be mentioned: It
can be found in the brilliant paper of Its, Isergin,
Korepin and Slavnov [10] where it is shown, that the
dNLSE,, arises as the quantum correlation func-
tions of the Heisenberg spin chain.

In addition in Section 3 a doubly discrete (with
discrete time) version of the IHM mode is given that
links in the same way with the doubly discrete NLSE
introduced by Ablowitz and Ladik in [2]. It first
appeared in a somewhat implicit form in [4,12].

In [8] the author explains the geometric back-
ground of the interplay between IHM model and
NLSE (see also [3,6]) From the geometric point of
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view the dNLSE,, seems to be the more natural
choice.

In the following we will identify R® with su(2)
that is the span of 1,j, and f where

mie=(p &) imin=(?5)
t=-ie=(3 )

2. Equivalence of the discrete Heisenberg mag-
netic model and the nonlinear Schradinger equa-
tion

The diIHM model and the dNLSE,, are well
known [1,7,3,13]. In this section it is shown that — as
in the smooth case — both models are gauge equiva-
lent. This equivalence seem to appear first in [9]
without any reference to the dIHM model. We start
by giving the discretizations.

The dNLSE,, has the form

iV =V, —2¥ + ¥ +I¥)
X (Ve1t Y1) (1)

It has the following zero curvature representation
(see[1,13D

k= My 1 L — LMy (2

with Ck and Mk of the form
wo Wy

I:k(l‘v)=(_@k ot

piW = p Wy
— Wi W,
(3)

where the overbar denotes complex conjugation.
Aiming to the forthcoming theorem we gauge this

. p2i—i+ P,
— pi g+ u Y

0
Lax pair with ~_, | and get
0 Vu
1 q”k /.,L 0
L(m) = v 1 0 -1
- Yk w

ilpk@kf 1
-, +iV,

O
_?’k—l 1

v, — i, ,

M ()= —
(1) .

+

i u? — 1) 0
0 —i( w2 — 1)
We now turn our attention for a moment to the

discrete isotropic Heisenberg magnet model. It is
given by the following evolution equation

SeiXS _, SXScs
1+4(Se S0 1+4(SuSc1)

with the S, being unit vectors in R3. Its zero curva-
ture representation is given by

) (4)

S=2 ©)

U= Vier U — UV (6)
with U, and V, of the form
U=1+AS
1
e
><(2)\2 S SEPN ok =
1+(S0Sc)  1+(S0Scw)

(7)

if one identifies the R® with su(2) in the usual way.
Now we are prepared to state

Theorem 1. The discrete nonlinear Schrodinger
equation dNLSE,, (1) and the discrete isotropic
Heisenberg magnet model diIHM (5) are gauge
equivalent.

Proof. We use the notation introduced above. Let &
be a solution to the linear problem

Fre1= Lk(l)‘?k’
«7|<=Mk(1)7k’=('v|k(1)+7k°7|:1)7k (8)

with a constant vector c. Since M, . DL D) -
LMD = M, ,(DL D — LM, (D = L (D
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the zero curvature condition stays valid and the
system is solvable. The additiona term &,c7 *
will give rise to an additional rotation around c in
the dIHM model. The importance of this possibility
will be clarified in the next section. Moreover define

Sc=F g, (9
Note that this implies that

1S X S
1+(S.S1)

In other words: [, | = tan(%) with ¢, = 2(S.,S.. 1)
We will show, that the S, solve the dIHM model (if
c=0). Todo sowe use .7 ! as agauge field:

— (10)

F-1 _ _q| M 0
Lk (M) :='/o_k+11|-k(“')37k='/o_k 0 M—l P«
If one writes p= /3% =_1+ix one gets p !
/J’ 1—iA m g /-L
=_1-1» and one can conclude that
Vi+ a2
L‘Tl(/\) . I+1iA _ 1 (141S)
= F.= +
“ V12T Ve
(11)

This clearly coincides with U,()) up to the irrelevant

normalization factor __t . On the other hand one
Vi+ a2

gets for the gauge transform of M,( )
M7 ()

= F M) F— T

=F (M) = M(1) —F 7, )T,

=7 L (D) F T

i(,u.z—l) 0
X L F—C
0 —I(,u —1)
But with above substitution for u one gets
i(pn?—1) 0 Al + A%
0 —i(p?t-1)) T 1+

(12)

and since 7, 'L, (D7 =7 L (DF,_, we
get
Fi LD 7
=l+F7 2 (Im(¥_ )i —Re(¥_)f) 7y
=1+7, 1 (Im(¥_,)i — Re(¥_ )7,
Remember that S =9,'is, and S _, =
FHiF 1. Using Eq. (10) and the fact that i and

Im,_,)j — Re(¥,_)f anti-commute we con-
clude !

s
1+(S0S-)

Combining this and Eg. (12) one obtains for the
gauge transform of M,

F L) F =1 (13)

Al + A%S,
1+ A2

SX §a
Jf_
1+(S0Sc-w)
SX §a

—c=_—2 MAAN——————
1+A2( 1+(S.,S_1)
(SKXSH)SK)
1+(S.Sc1)
—2A 2 S XS,
STy /\1+<SK,SK,1>
S+ Sc-: )_C

1+(S0S-1)

M7 (A) = —2[1

+ A2 S+ -

+ A2

=——=[l+VJ(A) —-cC 14

1+ )\2 k( ) ( )
Since the first term is a multiple of the identity and
independent of k it cancels in the zero curvature
condition and therefore can be dropped. This gives
the desired result if c=0. O

! to fix the sign of the second term one needs to look at the sign
of the scalar product

<7k1(|m(‘1’k—1)j _Re(wk‘l)f)yk’%>.
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2.1. Equivalence of the two discrete nonlinear
Schrédinger equations

There has been another discretization of the non-
linear Schrodinger equation in the literature [11,7]. It
can be derived from a dightly modified diHM model
by a gauge transformation. Since we showed that the
dNLSE,, introduced by Ablowitz and Ladik is gauge
equivalent to the dIHM it is a corollary of the last
theorem that the two discretizations of the NLSE are
in fact equivalent.

The method of getting the variables of this other
discretization is basically a stereographic projection
of the variables S, from the diHM [7]: One defines

xe=x(S)=vV2(-1"

2(S.+1) - IS+ il%
Nsc+il* +12(S+1) — IS+ il%il

15)

or

S=(1-1xl?)i+Im

ﬁ(—l)kxk\/ 1- |X2k| )
V2(=1)"x) 1~ |X2k|

If one modifies the evolution (5) by adding a rotation
around i

Xj—Re

£ (16)

: S(+1XS( SKXSK*l :
T I R T I S T
(17)

writing this in terms of the new variables y, gives
rise to the following evolution equation (dNLSE, ):

Pk,kfl

Qk,k—l

Pk,k+l

Qk,k+1

—ix=4x+ (18)

where

P = —

n,m

| xal? | Xl ?
Xn+Xm 1_ 2 1_ 2

1
_Xn| Xm|2 - Z(l Xn|2Xm + Xr12)_(m)

| Xul? | xal?
%1/ 1— 1-
2 2

and

2 2 — -
| xal” 1 Xl =+ (Xo X + X Xim)

| xol? | Xl
x1/1— 1—
2 2

—| xil°l xmlz) .

1
Qn,m=1_ E

This evolution clearly possesses a zero curvature

Vi(A) = Vi(A) = 2i (19)
since one can view S, as a function of y, via Eq.

(16).

Theorem 2. The dNLSE, (18) and the dNLSE,, (1)
are gauge equivalent.

Proof. This is aready covered by the proof of
Theorem 1. O

Since the S, are given by S =%, 1.7, the x, are
functions of the ¥, and vice versa, but these maps
are nonlocal.
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3. A doubly discrete IHM model and the doubly
discrete NLSE

In the following we will construct a discrete time
evolution for the variables S, that — applied twice —
can be viewed as a doubly discrete IHM model. In
fact it will turn out that this system is equivalent to
the doubly discrete NLSE introduced by Ablowitz
and Ladik [2]. We start by defining the zero curva-
ture representation.

U(A) =1+2aS, V(A =1+Arl+0) (20)

with r € R. The v, (as well as the S) are vectorsin
R? (again written as complex 2 by 2 matrix). The
zero curvature condition LV, =V, L, should hold
for al A giving v, + S =S +v,,adr(§-S)
=1,, 1S — Sy~ (Here and in the forthcoming we
use to denote the time shift.) One can solve this for

Uy 1 OF S getting
Ur1 = (Sc— o= 1) o (Sc— v — ")71,
Se= (S v NS(S—o—1) (21)

This can be interpreted in the following way: Since
Siotkr1— S, and —ov, sum up to zero they can be
viewed as a quadrilateral in [Ri3 But Eg. (21) says
that v,, , and S, arerotations 2 of v, and S, around
S, — v, So the resulting quadrilateral is a parallelo-
gram that is folded along one diagonal. See [8] to get
a more elaborate investigation of the underlying
geometry.

Eq. (21) is till a transformation * and no evolu-
tion since one has to fix an initial v,. But in the case
of periodic S, one can find in general two fix points
of the transport of v, once around the period and
thus single out certain solutions. If on the other hand
one has rapidly decreasing boundary conditions one
can extract solutions by the condition that S, — + S,
for k—> o and k— —oo. But instead of going into
this we will show, that doing this transformation
twice is equivalent to Ablowitz' and Ladiks system.

Let us recall their results.

2 Any rotation of a vector v in R3=su(2) can be written
asconjugation with a matrix o of the form o = cos(2)l+
sin(£)awhere ¢ is the rotation angle and a the rotation axis with
lal =

% In fact it is the Backlund transformation for the diHM model!

Theorem 3. (Ablowitz and Ladik 77) Given the
matrices

1w
_ @k

" 0

L =
k( :U«) 0 M—l

and V, (u) with the following u-dependency:

Vi(w) =

with V,{~ 2 being upper and V,{?) being lower trian-
gular. Then the zero -curvature condition

I‘L72Vk(72)+vk(0)+1u42vk(2)

Vi, (L () = L)V () gives the following
eguations:
(Wk — 1I’k)/i

=a, W — oW+ ag¥ —a, ¥,

+(a+ VA1~ ay 1f’ka7k)
+(—a W +a W )
X (1+1%,[%) A,

Hpr— %= Vo1 — lI’|<+1@|<

A (T+17%) = A(1+ 1, 17) (22)

with constants «, , ag and o _.

In the case of periodic or rapidly decreasing
boundary conditions the natural conditions .27, — 0,
and A, — 1 for k— 4o give formulas for ., and
Ay
Se=VW_ 1+ L (lpjlpj—l_ lpﬁ—l)

j=lo
k=114 |1f/j|2
i=lo 1+ |II,J |2

K=

with j, = 0 in the periodic case and j, = —o° in case
of rapidly decreasing boundary conditions.

Note that this is not the most general version of their
result. One can make ¥ and ¥ independent vari-
ables which results in dightly more complicated
equations but the given reduction to the NLSE case
is sufficient for our purpose.
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Theorem 4. The system obtained by applying the
above transformation twice is equivalent to the dou-
bly discrete Ablowitz Ladik system in Theorem 3.

Proof. The method is more or less the same as in the
singly discrete case although this time we start from
the other side:

Start with a solution S, of the ddiIHM model.
Choose &, such that

F T =S [('71<_+ll].'7k+l)'(‘/o_k_ 1j*7k)]

XIS 1.8 (23)

This is aways possible since the first equation leaves
a gauge freedom of rotating around i. Moreover
define L, (1) =%, 7, * and normalize 7, in such
away that L,(1) takes the form

Eq. (23) ensure that A, € span(j,f) and thus can be
written A, = Re(?)f — Im(¥,)j for some complex
Y,. Equipped with this we can gauge a normalized
version of M, () with &, and get

- . L I+ At
M = ﬁ/k+1Mk(/\)/k _Lk(l)ﬁ
1 v, 0

_ - k| M . (24)

if wewrite u = _1*i* asbefore. On the other hand
Vi1+2a2
we get for an — again renormalized — N,())
1+ u? .
Nky= 'gka(/\)yk_l
1 ~
=|—+pup 7k7_1
w

1

+ __M)g;k(r"'b'k)ykl
“

— WV Y (25)

But the zero curvature condition L,(u)NS () =
N7 ()L () yields that Vi must be lower and
V, upper triangular. Thus N7 (w)N7 () has the
u-dependency as required in Theorem 3. O
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