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Abstract

Ž .The equivalence of the discrete isotropic Heisenberg magnet IHM model and the discrete nonlinear Schrodinger¨
Ž .equation NLSE given by Ablowitz and Ladik is shown. This is used to derive the equivalence of their discretization with

the one by Izgerin and Korepin. Moreover a doubly discrete IHM is presented that is equivalent to Ablowitz’ and Ladiks
doubly discrete NLSE. q 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The gauge equivalence of the continuous isotropic
Heisenberg magnet model and the nonlinear Schrodi-¨

w xnger equation is well known 7 . On the other hand
there are several discretizations of the nonlinear

Ž w x.Schrodinger equation in literature e.g. 1,11,5,12 .¨
In particular there are two famous versions with
continuous time. One introduced by Ablowitz and

w x Ž .Ladik 1 from now on called dNLSE and oneAL
w x Žgiven by Izgerin and Korepin 11 from now on

. Ž w x.referred to as dNLSE see also 7 . The secondIK
Ž .can be obtained from the discrete or lattice isotropic

Ž .Heisenberg magnet model dIHM with slight modi-
w xfication via a gauge transformation 7 .

) Phone: q49-30-314 25784; fax: q49 - 30 - 314 21577;
e-mail: timh@sfb288.math.tu-berlin.de

In this paper the gauge equivalence of the dIHM
model and the dNLSE is shown. In fact this is inAL

complete analogy to the continuous case. The equiv-
alence of the two discretizations of the nonlinear
Schrodinger equation is derived from this. An other¨
interesting relation between the discrete Heisenberg
spin chain and the dNLSE should be mentioned: ItAL

can be found in the brilliant paper of Its, Isergin,
w xKorepin and Slavnov 10 where it is shown, that the

dNLSE arises as the quantum correlation func-AL

tions of the Heisenberg spin chain.
ŽIn addition in Section 3 a doubly discrete with

.discrete time version of the IHM model is given that
links in the same way with the doubly discrete NLSE

w xintroduced by Ablowitz and Ladik in 2 . It first
w xappeared in a somewhat implicit form in 4,12 .

w xIn 8 the author explains the geometric back-
ground of the interplay between IHM model and

Ž w x.NLSE see also 3,6 From the geometric point of
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view the dNLSE seems to be the more naturalAL

choice.
3 Ž .In the following we will identify R with su 2

that is the span of i ,j , and k where

i 0 0 iis is s , js is s ,3 1ž / ž /0 yi i 0

0 y1ksyis s2 ž /1 0

2. Equivalence of the discrete Heisenberg mag-
netic model and the nonlinear Schrodinger equa-¨
tion

The dIHM model and the dNLSE are wellAL
w xknown 1,7,3,13 . In this section it is shown that – as

in the smooth case – both models are gauge equiva-
w xlent. This equivalence seem to appear first in 9

without any reference to the dIHM model. We start
by giving the discretizations.

The dNLSE has the formAL

˙ 2< <yiC sC y2C qC q Ck kq1 k ky1 k

= C qC 1Ž . Ž .kq1 ky1

It has the following zero curvature representation
Ž w x.see 1,13

ˆ ˆ ˆ ˆk̂sM L yL M 2˙ Ž .kq1 k k k

ˆ ˆwith L and M of the formk k

m Ck
L̂ m sŽ .k y1ž /yC mk

2 y1m iy iq iC C m iC ym iCk ky1 k ky1ˆ Ž .M m sk y1 y2ž /ym iC qm iC ym iq iy iC Cky1 k k ky1

3Ž .

where the overbar denotes complex conjugation.
Aiming to the forthcoming theorem we gauge this

'm 0
Lax pair with and gety1� 0'0 m

1 C m 0k
L m sŽ .k y1ž /ž / 0 myC 1k

iC C iC y iCk ky1 k ky1
M m sŽ .k ž /yiC q iC yiC Cky1 k k ky1

1 Cky1
q ž /yC 1ky1

=
i m2 y1 0Ž .

4Ž .y2ž /0 yi m y1Ž .

We now turn our attention for a moment to the
discrete isotropic Heisenberg magnet model. It is
given by the following evolution equation

S =S S =Skq1 k k ky1
Ṡ s2 y2 5Ž .k ² : ² :1q S ,S 1q S ,Skq1 k k ky1

with the S being unit vectors in R3. Its zero curva-k

ture representation is given by

U̇ sV U yU V 6Ž .k kq1 k k k

with U and V of the formk k

U s IqlSk k

1
V syk 21ql

=
S qS S =Sk ky1 k ky122l q2lž /² : ² :1q S ,S 1q S ,Sk ky1 k ky1

7Ž .
3 Ž .if one identifies the R with su 2 in the usual way.

Now we are prepared to state

Theorem 1. The discrete nonlinear Schrodinger¨
( )equation dNLSE 1 and the discrete isotropicAL

( )Heisenberg magnet model dIHM 5 are gauge
equiÕalent.

Proof. We use the notation introduced above. Let FF

be a solution to the linear problem

FF sL 1 FF ,Ž .kq1 k k

˙ ˆ y1FF sM 1 FF [ M 1 qFF cFF FF 8Ž . Ž . Ž .Ž .k k k k k k k

ˆ Ž . Ž .with a constant vector c. Since M 1 L 1 ykq1 k
ˆ ˙Ž . Ž . Ž . Ž . Ž . Ž . Ž .L 1 M 1 s M 1 L 1 y L 1 M 1 s L 1k k kq1 k k k k
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the zero curvature condition stays valid and the
system is solvable. The additional term FF cFFy1

k k

will give rise to an additional rotation around c in
the dIHM model. The importance of this possibility
will be clarified in the next section. Moreover define

S [FFy1 i FF 9Ž .k k k

Note that this implies that

< <S =Sk kq1
< <s C 10Ž .k² :1q S ,Sk kq1

fk< < Ž . Ž .In other words: C s tan with f s/ S ,S .k k k kq12

ŽWe will show, that the S solve the dIHM model ifk
. y1cs0 . To do so we use FF as a gauge field:

m 0y1FF y1 y1L m [FF L m FF sFF FFŽ . Ž .k kq1 k k k ky1ž /0 m

1q i l y11q i lIf one writes ms s one gets m(1y i l
2'1q l

1y i ls and one can conclude that
2'1q l

Iq i l 1y1FF y1L l sFF FF s IqlSŽ . Ž .k k k k2 2' '1ql 1ql

11Ž .

Ž .This clearly coincides with U l up to the irrelevantk
1normalization factor . On the other hand one

2'1q l

Ž .gets for the gauge transform of M mk

M FFy1
mŽ .k

y1 y1 ˙[FF M m FF yFF FFŽ .k k k k k

sFFy1 M m yM 1 yFF cFFy1 FFŽ . Ž .Ž .k k k k k k

sFFy1L 1 FF FFy1Ž .k ky1 k k

=
i m2 y1 0Ž .

FF ycky2ž /0 yi m y1Ž .

But with above substitution for m one gets

2 lIql2 ii m y1 0Ž .
sy2 2y2ž / 1ql0 yi m y1Ž .

12Ž .

y1 Ž . y1 Ž .and since FF L 1 FF sFF L 1 FF wek ky1 k ky1 ky1 ky1

get

FFy1L 1 FFŽ .k ky1 k

s IqFFy1 Im C jyRe C k FFŽ . Ž .Ž .ky1 ky1 ky1 ky1

s IqFFy1 Im C jyRe C k FFŽ . Ž .Ž .k ky1 ky1 k

Remember that S s FFy 1 i FF and S sk k k ky 1
y1 Ž .FF i FF . Using Eq. 10 and the fact that i andky1 ky1
Ž . Ž .Im C j y Re C k anti-commute we con-ky1 ky1

clude 1

S =Sk ky1y1FF L 1 FF s Iq 13Ž . Ž .k ky1 k ² :1q S ,Sk ky1

Ž .Combining this and Eq. 12 one obtains for the
gauge transform of Mk

S =S lIql2Sy1 k ky1 kFFM l sy2 IqŽ .k 2ž /² :1q S ,S 1qlk ky1

y2 S =Sk ky1
ycs lIql2 ž ² :1q S ,S1ql k ky1

S =S SŽ .k ky1 k2ql S q yckž / /² :1q S ,Sk ky1

y2l 2 S =Sk ky1
s Iy l2 2 ž ² :1q S ,S1ql 1ql k ky1

S qSk ky12ql yc/² :1q S ,Sk ky1

y2l
s IqV l yc 14Ž . Ž .k21ql

Since the first term is a multiple of the identity and
independent of k it cancels in the zero curvature
condition and therefore can be dropped. This gives
the desired result if cs0. I

1 to fix the sign of the second term one needs to look at the sign
of the scalar product

S =Sk ky1y1FF Im C jyRe C k FF , .Ž . Ž .Ž .k ky1 ky1 k¦ ;² :1q S ,Sk ky1
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2.1. EquiÕalence of the two discrete nonlinear
Schrodinger equations¨

There has been another discretization of the non-
w xlinear Schrodinger equation in the literature 11,7 . It¨

can be derived from a slightly modified dIHM model
by a gauge transformation. Since we showed that the
dNLSE introduced by Ablowitz and Ladik is gaugeAL

equivalent to the dIHM it is a corollary of the last
theorem that the two discretizations of the NLSE are
in fact equivalent.

The method of getting the variables of this other
discretization is basically a stereographic projection

w xof the variables S from the dIHM 7 : One definesk

k'x sx S s 2 y1Ž . Ž .k k

=
< < 22 S q i y S q i iŽ .k k

15Ž .
4 2 2< < < < < <(S q i q 2 S q i y S q i iŽ .k k k

or

2< <xkk2 '< <S s 1y x iq Im 2 y1 x 1yŽ . (Ž .k k kž /2

=

2< <xkk'jyRe 2 y1 x 1y k 16Ž . Ž .(kž /2

Ž .If one modifies the evolution 5 by adding a rotation
around i

S =S S =Skq1 k k ky1
Ṡ s2 y2 y4S = ik k² : ² :1q S ,S 1q S ,Skq1 k k ky1

17Ž .

writing this in terms of the new variables x givesk
Ž .rise to the following evolution equation dNLSE :IK

P Pk ,kq1 k ,ky1
yix s4x q q 18Ž .˙k k Q Qk ,kq1 k ,ky1

where

2 2< < < <x xn m
P sy x qx 1y 1y( (n ,m n m 2 2ž

1
2 2 2< < < <yx x y x x qx xž /n m n m n m4

=

2 2< < < <x xm n
1y 1y( (

2 2 /
and

1
2 2< < < <Q s1y x q x q x x qx xŽ .n ,m n m n m n mž2

=

2 2< < < <x xn m
1y 1y( (

2 2

< < 2 < < 2y x x .n m /
This evolution clearly possesses a zero curvature

˙ ˆ ˆcondition U sV U yU V withk kq1 k k k

V̂ l sV l y2 i 19Ž . Ž . Ž .k k

since one can view S as a function of x via Eq.k k
Ž .16 .

( ) ( )Theorem 2. The dNLSE 18 and the dNLSE 1IK AL

are gauge equiÕalent.

Proof. This is already covered by the proof of
Theorem 1. I

Since the S are given by S sFFy1 i FF the x arek k k k k

functions of the C and vice versa, but these mapsk

are nonlocal.
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3. A doubly discrete IHM model and the doubly
discrete NLSE

In the following we will construct a discrete time
evolution for the variables S that – applied twice –k

can be viewed as a doubly discrete IHM model. In
fact it will turn out that this system is equivalent to
the doubly discrete NLSE introduced by Ablowitz

w xand Ladik 2 . We start by defining the zero curva-
ture representation.

U l s IqlS , V l s Iql r IqÕ 20Ž . Ž . Ž . Ž .k k k k

Ž .with rgR. The Õ as well as the S are vectors ink k
3 Ž .R again written as complex 2 by 2 matrix . The

˜zero curvature condition L V sV L should holdk k kq1 k
˜ ˜Ž .for all l giving Õ qS sS qÕ and r S ySk k k kq1 k k

˜ ŽsÕ S yS Õ . Here and in the forthcoming wekq1 k k k
˜ .use to denote the time shift. One can solve this for

˜Õ or S gettingkq1 k

y1
Õ s S yÕ yr Õ S yÕ yr ,Ž . Ž .kq1 k k k k k

y1S̃ s S yÕ yr S S yÕ yr 21Ž . Ž . Ž .k k k k k k

This can be interpreted in the following way: Since
˜S ,Õ ,yS , and yÕ sum up to zero they can bek kq1 k k

3 Ž .viewed as a quadrilateral in R . But Eq. 21 says
˜ 2that Õ and S are rotations of Õ and S aroundkq1 k k k

S yÕ . So the resulting quadrilateral is a parallelo-k k
w xgram that is folded along one diagonal. See 8 to get

a more elaborate investigation of the underlying
geometry.

Ž . 3Eq. 21 is still a transformation and no evolu-
tion since one has to fix an initial Õ . But in the case0

of periodic S one can find in general two fix pointsk

of the transport of Õ once around the period and0

thus single out certain solutions. If on the other hand
one has rapidly decreasing boundary conditions one

˜can extract solutions by the condition that S ™"Sk k

for k™` and k™y`. But instead of going into
this we will show, that doing this transformation
twice is equivalent to Ablowitz’ and Ladiks system.

Let us recall their results.

2 3 Ž .Any rotation of a vector Õ in R ssu 2 can be written
fŽ .asconjugation with a matrix s of the form s scos Iq2

fŽ .sin awhere f is the rotation angle and a the rotation axis with2

< <a s1.
3 In fact it is the Backlund transformation for the dIHM model!¨

( )Theorem 3. Ablowitz and Ladik 77 GiÕen the
matrices

1 C m 0k
L m sŽ .k y1ž /ž / 0 myC 1k

( )and V m with the following m-dependency:k

V m smy2 V Žy2.qV Ž0.qm2V Ž2.Ž .k k k k

with V (y 2) being upper and V (2) being lower trian-k k

gular. Then the zero curÕature condition
˜( ) ( ) ( ) ( )V m L m sL m V m giÕes the followingk q 1 k k k

equations:

C̃ yC riŽ .k k

˜ ˜sa C ya C qa C ya Cq kq1 0 k 0 k q ky1

˜q a C AA ya C AAž /q k kq1 q k k

˜q ya C qa CŽ .y kq1 y ky1

˜ 2< <= 1q C LŽ .k k

˜AA yAA sC yC C˜kq1 k k ky1 kq1 k

2 ˜ 2< < < <L 1q C sL 1q C 22Ž .Ž . Ž .kq1 k k k

with constants a , a and a .q 0 y
In the case of periodic or rapidly decreasing

boundary conditions the natural conditions AA ™0,k

and L ™1 for k™"` giÕe formulas for AA andk k

L :k

ky1

˜AA sC C q CC yC ˜Ý ž /k k ky1 j jy1 j jy1
jsj0

ky1 2˜< <1q Cj
L s Łk 2< <1q Cjsj0 j

with j s0 in the periodic case and j sy` in case0 0

of rapidly decreasing boundary conditions.

Note that this is not the most general version of their
result. One can make C and C independent vari-
ables which results in slightly more complicated
equations but the given reduction to the NLSE case
is sufficient for our purpose.
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Theorem 4. The system obtained by applying the
aboÕe transformation twice is equiÕalent to the dou-
bly discrete Ablowitz Ladik system in Theorem 3.

Proof. The method is more or less the same as in the
singly discrete case although this time we start from
the other side:

Start with a solution S of the ddIHM model.k

Choose FF such thatk

y1 y1 y1FF i FF sS , FF j FF , FF j FFŽ . Ž .k k k kq1 kq1 k k

=5w xS ,S 23Ž .kq1 k

This is always possible since the first equation leaves
a gauge freedom of rotating around i. Moreover

Ž . y1define L 1 sFF FF and normalize FF in suchk kq1 k k
Ž .a way that L 1 takes the formk

L 1 s IqAŽ .k k

Ž . Ž .Eq. 23 ensure that A gspan j ,k and thus can bek
Ž . Ž .written A sRe C ky Im C j for some complexk k k

C . Equipped with this we can gauge a normalizedk
Ž .version of M l with FF and getk k

1 Iqli
FF y1M s FF M l FF sL 1Ž . Ž .k kq1 k k k2 2' '1ql 1ql

1 C m 0k
s 24Ž .y1ž /ž / 0 myC 1k

1qilif we write ms as before. On the other hand
2'1ql

Ž .we get for an – again renormalized – N lk

1qm2
FF y1˜N s FF N l FFŽ .k k k k

m

1
y1˜s qm FF FFk kž /m

1
y1˜q ym FF rqÕ FFŽ .k k kž /m

smy1VyqmVq 25Ž .k k

˜ FFŽ . Ž .But the zero curvature condition L m N m sk k
FFk Ž . Ž . qN m L m yields that V must be lower andkq1 k k

y ˜FF FFŽ . Ž .V upper triangular. Thus N m N m has thek k k

m-dependency as required in Theorem 3. I
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