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DYNAMICS  OF  THE LONG JOSEPHSON  JUNCTIONS 

V. K. Semenov, S. A. Vasenko  and K. K. Likharev 
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Static  and  dynamic  properties  of  long  sandwich-type 
Josephson  junctions  have  been  analyzed.  These  junctions, 
both  rectangular  ("uniform")  and  non-rectangular  ("sha- 
ped"), can  be  described  by  the  one-dimensional  equation 
for  the  phase  difference'P(x,t), with  the  coefficients 
generally  dependent on x. The  variation  of  these  coef- 
ficients  reflects  that  of  effective  junction  inductance, 
capacitance,  critical  current  density  and  injected  cur- 
rent  density,  along  the  junction  length L. If  L>>AJ, 
the  equation  for 'f(x,t) can be  reduced  to  a  simpler 
"hydrodynamic-type"  equation  for  the  Josephson  vortex 
density.  Coefficients  of  this  reduced  equation  have 
been  found  analytically  for  the  limit  cases.  The  static 
version  of  the  reduced  equation  has  been  used  for  cal- 
culating  the  threshold  characteristics  of  the  shaped 
Josephson  junctions,  including  the  amplitude  of  "side- 
lobes". The  dynamic  version  of  the  equation  has  been 
used  for  the  description  of  the  I-V  curves  of  the  uni- 
form  junctions;  viscous  flux  flow,  Eck  peak  and  "dis- 
placed  linear  branch"  are  particularly  discussed. 

I Introduction 

Long  Josephson  junctions  attract  much  attention, 
particularly  because  of  their  computer  applications I .  
Prop  rties  of  such  junctions,  both  uniform2  and  "sha- 
ped"', can  be  described  by  the  well-known  second-order 
differential  equation  for  the  phase  difference ('P) dis- 
tribution  along  the  junction  length 

-2 Here p , v and p2 are  the  junction  inductance,  capa- 
citance  and  critical  current  per  unit  length,  respecti- 
vely,  while  j  describes  the  possible  laterally  injec- 
ted  current499.  All  the  parameters  can  change  conside- 
rably  along  the  junction  length L.  

Equation (I) should  be  solved  numerically  in  most 
cases. The difficulties  of  such  a  solution,  however, 
grow  rapidly  at L/AJ>>l .  Hence,  there  had  been  a  need 
for  a  simpler  ("reduced")  equation which  would  give  an 
adequate  description  of  long  Josephson  junction  in 
terms  of  slowly  varying  vortex  density h(x) rather  than 
in  terms  of  rapidly  changing  phase p(x,t). A  general 
approach  of  this  kind  had  been  developed  earlier  7,9 
(see  also  the  review 8 ) .  Concrete  reduced  equation 
had  been  derived,  however,  only  for  the  case  of  the 
uniform  junction  with  small  damping6.  Another  attempt" 
to  derive  such  a  reduced  equation  for  arbitrary  damping 
had  used  the  phenomenological  approach  which  had  led 
to an equation  valid  in  rare  cases  only. 

The  objective  of  the  next  section  of  the  present 
paper  is  to  describe an accurate  derivation  of  the  re- 
duced  equation  for  the  vortex  density  distribution 
along  the  Josephson  junction.  In  Sec.111,  the  simplest 
applications  of  the  equation  and  the  physical  meaning 
of  its  coefficients  are  discussed.  Derivation  of  the 
generalized  equation  suitable  for  the  transient  process 

analysis  is  given  in  Sec.1V. In Sec.V,  the  reduced 
equation  is  used  for  calculating  the  threshold  charac- 
teristics  of  the  shaped  Josephson  junctions.  Dynamic 
properties  of  long  junctions  with  both  lateral  and  edge 
current  injection  are  discussed  in  Section  VI. 

Manuscript  received  September  29, 1980. 

I1 Derivation  of  the  Reduced  Equation 

Me  start  from  the  one-dimensional  equation ( I )  of 
the  Josephson  junction,  where  the  normalized  current 
density  is  assumed  to  be  equal  to 

j = sin9 + -, a v  
at 

in  accordance  with  the  ordinary  Resistively  Shunted  Jun- 
ction (RSJ)  model.  One  would  see,  however,  that  our  de- 
rivation  can  be  readily  extended  to  more  complex  cur- 
rent-phase  relationships. 

The basic  idea  of  the  method  lies  in  the  following. 
In the  infinite  and  uniform  Josephson  junction, Eq.(l) 
has  a  solution 

Y o  = 'f'o(@,h,@), 0 = hx -dt, (3) 

which  represents  an  infinite  and  uniform  array  of  the 
Josephson  vortices  with  constant  density  h and  velocity 
u=w/h.  Now, if a  long  junction  has  slowly  varying  para- 
meters p , V ,  ? and je, the  solution 'f'(x,t) at  each 
point  is  close  to  the  solution\po ( 3 )  with  slowly  vary- 
ing  density h(x) and  velocity u(x)=G)/h(x). Thus, ? 
can be expressed  as 

Ip = Y o  + Y], I Y ] I < < l ,  (4) 
where  h=a0/ax is  some  smooth  function  of x, and91 des- 
cribes  the  small  array  deformation  due  to  (small)  jun- 
ction  parameter  gradients. 

According  to  the  above  arguments,  functionq. 
should  satisfy  equation 

where k is  defined  as 

p2k2 = p2h2 -V 2 2  L3 . (6) 
Equation (5) has  a  required 2Ti-periodic solution q 0 ( 0 )  
only  if j, is  some  definite  function  of w and k, 

Functions Vo(0,k,(3) and  jo(k,w) can  be  easily  found nu- 
merically  and  can  be  treated  as  some  known  functions; 
Fig. 1 shows  the  plots  of  jo  (see "). 

Now,  substituting Eq.(4) to  the  basic  equation ( 1 )  
and  taking  into  account  the  zero-order  and  the  first- 
order  terms  only, we obtain  a  linear  equation  for p ,  

p2 k2 3 c ( 3 S  - 'p~cosyb = f(B,k,d), 
d02 d0 

( 8 )  

According  to  the  basic  idea  of  the  method, (P I  should 
be  a 2rr-periodic function  of 0 .  This  is  possible  only 
if  coefficients  in  the  function  f(0,k,a)  satisfy  the 
additional  requirement 
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words, C plays  the  role  of  the  vortex  array  elasticity 
modulus.  Some  important  asymptotes  for c are 

C = 64n k-3exp(-27r/k), at k - 0; 
c = 1 ,  at k --; 

(15) 

at  arbitrary k,C  can  be expressed  through  the  complete 
elliptic  integrals (LJ = 0) 

0 \ I I I I , 0.0 , 
0 0.5 1.0 1.5 2 .o 

k 

Fig. 1 .  Coefficient j  as  the  function  of  the  effecti- 
ve  vortex  density  at  vzrious  Josephson frequenciesw. 
Some  important  asymptotes: 

j =0, at W = 0 and k#O; 

jo= (cJ + l)’”, at G, # 0 and k 4 ;  

j =a, at (3 >> 1 or k >71. 

2 

with  functions  F,  being  equal  to 

For  what  follows,  the  function 

C = A + 4 k B  2 

will  be  more  convenient  sometimes. 

Equation (9) considered  together  with  the  defini- 
tion (6)  of  parameter k, is  just  the  reduced  equatidn 
needed, It  describes  the  variation  of  the  vortex  den- 
sity h along  the  Josephson  junction  at  the  fixed Jose- 
phson  oscillation frequencyw. 

I11  Physical  Sense  of  the  Equation  Coefficients 

According  to Eq.(5), j is a normalized  density  of 
the  laterally  injected  cuFrent j which  induces  the 
motion of vortex  array  of  densityek  with  velocity u= 
w/k in a uniform  infinite  junction  with  high  damping 
(small  capacitance).  To  clarify  the  sense  of  the  other 
two  coefficients, A and.C, let us apply Eq.(9) to  two 
simplest  problems  concerning a static  vortex  array, 
W =  0 .  In this  case, pk=ph, jo=O and  the  reduced  equ- 
ations  takes a simpler  form 

1. Static  Vortex  Array  in a Uniform  Junction 

Consider a uniform  (p=constr  p=const)  segment  of a 
long  junction,  containing a motionless  vortex  array. 
From Eq.(13) we  get 

j = const x C - dh 
dx’ (14) 

2. Static  Vortex  Array  in a Non-Uniform  Junction 

As  it  follows  from Eqs.(l), (5) and ( 6 ) ,  variable 
k has  the  physical  sense  of  the  effective  vortex  densi- 

where d@ is  the  magnetic  flux  enclosed  in a junction 
segment  dx 7 7  AJ, and ~J(x) is  the  local  value  of  the 
Josephson  penetration  depth. 

According to  Eq.(13),  the density  is  constant  if 

Hence,  factor kA shows  what  current je should be appli- 
ed  to counterbalance  the  junction  parameter  gradient. 

Atw= 0, the  following  formulas  take  place 

A = 4/nk, at k - Q ;  

A = i ,  at k -t-. 
Note  also,  that  at W = 0 

C = d(kA)/dk, ( 2 0 )  
and  that  at  any k and w 

A = ajo/aw. (21) 

IV Generalization  for  the  Transient  Processes 

The  method  can  be  readily  generalized  for  the  tran- 
sient  processes,  where  h=h(x,t)  andW=w(x,t)  are  slow- 
ly  varying  functions  of  both  space  and  time.  Taking 
into  account  that 

and  accepting  the  additional  conditions 

one  obtains  the  equation 

where  coefficients D, G are  defined  as 

D = 13/Io, G = 1 4 / I o ,  

while I are  expressed  by  Eq. (10) with i a2vo avo a VO 
aea w a ($1 ’ 4 .  aw’ 

F3= - i- - F = -  

* +  
at 

( 2 4 )  

Equation (24) can  be  used  for  analysis  of  rather 
complex  nonstationary  processes  in  the  long  Josephson 
junctions. In this  paper we,  however,  will  concentrate 
on the  simplest  applications of the  reduced  equation, 
where  ak/at = &/at = 0, and  Eq.(9)  is  valid. 

Thus,  factor C shows  what  lateral  current j , i. e . ,  
what  Lorenz  force  should  be  applied  to  the earray  to 
counterbalance  the  vortex  density  gradient.  In  other 
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Fig. 2. Schematic  view of a  long  Josephson  junction 
(shaded  area)  between  two  thin-film  superconducting 
electrodes.  Except  the  currents  flowing  along  the  elec- 
trodes  (along  the  x  axis),  lateral  current je can  be 
injected  into  the  junction. 

V Critical  Current  of  Shaped  Josephson  Junctions 

The  "shaped"  Josephson  junctions  have  been  succes- 
sfully  used  in  logic  gates  for  the  cryogenic  computer 
circuits IS3. In  comparison  with  the  rectangular-junc- 
tion  gates,  their  threshold  characteristics ( 1 ~ ) ~ ~ ~  = 
f(Ic) can  exhibit  very  small  secondary  maximums  ("side- 
lobes"), which  is  favorable  for  the  applications. 

Figure 2 shows  general  view  of  a  shaped  junction. 
If  the  junction  width  is  small  enough  13,  one  can  in- 
tegrate  all  variables  over  the  y  axis  and  come  to  the 
one-dimensional  equation ( 1 )  with  parameters 

p2 = e + ( 1 - q  (x) Q 1, v = p (x)I3, 2 2 2  

2 (27) p = W(x)/Wo, = (2X+d)/(2h+d0) 6 1 .  

Physically, e is  the  ratio  of  inductance  per  square  of 
the  junction  to  that  of  the  surrounding  overlapping 
area;  d  and  do  are  the  respective  electrode  spacings, 
R is  the  normalized  junction  capacitance.  We  measure 
length  in  units 

the  value  of XJ, which  a  junction  of  uniform  width W= 
Wo would  have. 

Assuming  the  junction  to  be  long,  and  its  parame- 
ters (27)  to change  smoothly  along  the  length L, we 
can  use  static  version (13) of  the  reduced  equation  to 
find  the  density h(x) of  the  static  vortex  array  inside 
the  junction.  Taking Eq.(20)  into account,  we  obtain 
the  relation 

kApp = i = const (29) 

for  the  regions  with je= 0, h # 0. To  find  i  for  the 
junction  with  "pointed"  edges  (Fig.  3a,b) 

W(x) +d0x, at x - 0 ,  

W(x) -cd L(L-x),  at x + L, 
(30) 

we should  write  down  the  boundary  condition  for Eq.(l) 

and  the  similar  condition  at  x=L.  Here I(0) is  the  cur- 
rent  injected  into  the  junction  left  edge,  and 11 is 
the  critical  current  of  a  rectangular  junction  of  width 
Wo. At  a  pointed  edge (30), h -. const, p -const, + O  
and  thus k -to? According  to  Eq. ( 5 ) ,  yo- 8 ,  and a$;ax + 

h, so that  using Eq.(19)  and  Eq.(3l) we get 

Equations (29)  and (32) show  that  the  current I(0) 
induces  vortices  at  the  junction  left  edge,  which  pene- 
trate  into  the  junction,  the  vortex  array  density  de- 
creasing  as  the  junction  width W(x) increases. The den- 

tb) 10 o 10 IC 

r 
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10 o Io I C  

td) 
Fig.  3.  Logic  gates with  shaped  point-edged  Josephson 
junctions,  using  edge (a) and  lateral (c) gate  current 
injection,  and  their  threshold  characteristics (b,d). 

sity  becomes  zero  at  some  point  inside  the  junction, 
where  h=O,  k-0, kA +4/7r ,  and  thus 

(4/7l)pp = 2 I(O)/I].  (33) 
With  growing  current I ( O ) ,  this  point  shifts  deeper 

inside  the  junction.  When  it  reaches  the  widest  part  of 
the  junction,  the  static  solution  becomes  impossible, 
because  vortices start'to leave  the  junction  through 
the  opposite  junction  edge  (at I(L)=O). For  this  cri- 
tical  value  of I(O),  Eq.  (33) yields 

In  the  Josephson  logic  gates, I(0) and I(L) are 
some  linear  functions  of  the  transport  (gate)  current 
IG and  the  control  current  IC.  For  example,  in  the  in- 
line  gate  (Fig.  3a)  placed  over  the  superconducting 
ground  plane, 

I(0) = IG + IC, I(L) = IC.  (35) 
By the  usual  argumentation  2,3,  we  come  to  the  well- 
known "saw-tooth''  threshold  characteristic  of  the  gate 
(Fig.  3b),  but  with  the new  current  scale  (34)  and 
without  any  side-lobes: (1G)max' 0 at ~ 1 ~ ~ ~ 1 ~ .  This  re- 
sult  can  be  easily  explained:  pointed  edges  of  the  jun- 
ction  remove  the  energy  barriers  from  the  edges and 
make  the  vortex  entrance  and  exit  possible as  soon  as 
they  are  energy-advantageous.  This  is  why  the  critical 
current  is  equal  to  just  the  "thermodynamic  value"  (34) 
(see,  for  example,  the  monograph 2). The side-lobes 
have  vanished  in  the  zeroth  approximation  of  the  method, 
because  they  have  been  the  result  of  the  vortex  pinning 
at  the  edge  energy  barriers. 

To  find  the  (small)  amplitude  of  the  side-lobes,one 
should  make  the  first  approximation  by  writing  down  the 
general  expression  for  the  gate  current 

L 

0 
IG = I' 5 p2(x)  sin'f(x) dx, (36) 

taking  it  by  parts twice,  and  neglecting  the  higher 
terms  with  respect  to  h.r/L < < I :  

At  a  large  junction  length, L>JXJ, small  variations  of 
IC result  in  large  changes  of Y ( O ) ,  "(L), and  thus  the 
critical  current  rapidly  oscillates  remaining  below  the 
smooth  envelope  curve14 
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Fig. 4. I-V  curves  of  the 
long  junction  with  uniform 
lateral  current  injection. 
Dashed  line:  small  capaci- 
tance, B=O. Solid  line: 
finite  capacitance, 6=4. 
Thin  dashed  lines:  asymp- 
totes, je= (~'+1)~/~  and 
j e=L3. 

For experimental  "sine-shaped"  junctions  with jc 
= 1.6 kA/cm2, L = 6@ = 60  pm, Wo= 35  pm,  Wmax Wo, 
Eq.  (34)  yields Io= 7.3 mA, the  value  equal  to  the  ex- 
perimental  one, Io= 7.5 mA, within  the  limits  of  uncer- 
tanity  of  L/hg . For  the  amplitude  of  the  first  side- 
lobe  (at IC= 1.2 Io), Eq.(38) yields  the  experimental 
result ( 1 ~ ) ~ ~ ~ '  0.7 mA for known valuesdo%4L" 1.2 and 
a reasonable  value A =  150  nm. 

Thus, the  simple  analytical  theory  described  above 
is  in  quantitative  agreement  with  the  experimental  data 
available,  even  for  very  moderate L / h  ratios. 

One  can  readily  apply  the  same  approach  to  gates 
with  the  lateral  current  injection 495, supplied  with 
the  pointed  edges t o  suppress  side-lobes  (Fig. 3c). At 
L/AJ -00, one  obtaines  the  quasi-rectangular  threshold 
curve  (Fig.  3d)  with  the  same Io (34)  but  the  diffe- 
rent  zero-field  critical  current 5 

where L'  is  the  length  of  the  current  injection  segment. 
This length  can  be much  larger $, in  which  case Io>'Io, 
i.e., the  logic  gain  is  large. 

VI Dynamic  Properties  of  Long  Junctions 

Junction  properties  at  finite  dc  voltage @#O) are 
even  more  sensitive  to  the  method  of  the  current  injec- 
tion,  We  shall  consider  two  extreme  cases  for a long 
uniform  junction +'=I, p2=1, v2=B=const). 

1. Lateral  Current  Injection 

Let the  long  junction  be  fed  with  the  uniform  cur- 
rent je (Fig. 2). In  this  case,  the  reduced  equation 
(9) has  the  uniform  solution:  h=const, k= )h2-8u2( 
with h and w satisfying  the  condition 

jo(lh2-Bu2)1/2,U) = je. (40) 
Hence,  at a fixed  magnetic  field  the  function jo gives 
the  I-V  curve  of a long  Josephson  junction.  Figure 4 
shows  the I-V curves  for  the  low-capacitance  (dashed 
line)  and  finite-capacitance  (solid  line)  junctions I 1 .  
At  small  currents,  dc voltageo and  hence  the  vortex 
velocity  u=w/h  are  proportional  to je (see  also 12). 
This behavior  corresponds  to  the  viscous  motion  of  vor- 
tices  ("flux  flow")  with  the  viscosity  factor 

1 aje/aul = h A(h,o),  (41) 
W * O  

independent  of  the  junction  capacitance. 

At  larger  currents,  voltage  increases  smoothly  in 
the  highly  damped  (low-capacitance)  junctions,  while  in 
the  finite-capacitance  junctions  the  I-V  curve  shows 
the  "Eck  peak" . At  the  top  of  the  peak,  vortex  array 
velocity u is  equal  to  the  wave  propagation  velocity Z 
(= ~-1/2 in  our  units), 

hpeak - - n'/2w.  (42) 

2. Edge  Current  Injection 

In  this case, h>changes along  the  junction  length 
and  all  terms  of  Eq.(9)  should  be  taken  into  account. 
If voltage  and/or  magnetic  fieid  are  large,  we  get 

dh/dx = -0, at 0 + k 91, 2 4  (43) 
merely a linear  change  of  magnetic  field h and  electrode 
currents  1=(11/2)h  with  x, due to  the  junction  normal 
conductivity.  If  dc  voltage  is  lower  than  unity, a con- 
siderable  change  of  the  linear law (43)  takes  place  in 
vicinity  of  the  resonance (42). Numerical  solution  of 

n 
" 0  w I 

Eq.(9) shows  that  this  resonant  region  is  closely  rela- 
ted  with  the  "displaced  linear branch"16,170f I-V  curve. 
The detailed  discussion of  the  problem  shall  be  the  sub- 
ject of a separate  publication. 
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