Analytical Continuation from Positive Integres

July 28, 2021

イロト イヨト イヨト イヨ

The $\Gamma(z)$ function has simple poles at zero and negative integers z = 0, -1, -2...

$$\Gamma(z) = \frac{e^{-Cz}}{z} \prod_{k=1}^{\infty} \frac{e^{z\kappa}}{1+z/k}$$

Here C is the Euler constant. The function $\Gamma^{-1}(-z)$ vanish at zero and positive integers z = 0, 1, 2, ... We shall denote this set by \mathcal{N}^+ . Let us introduce a function $\phi(z)$ which is regular at \mathcal{N}^+ but otherwise arbitrary. It can have singularities [poles and branch cuts] at other points on the complex plane. The following function vanish at $z \in \mathcal{N}^+$

$$\phi(z)\Gamma^{-1}(-z) = 0$$
 for $z = 0, 1, 2, 3...$

Remark:

Actually the function $\phi(z)$ can have weak singularities at \mathcal{N}^+ , weaker then the simple pole.

< □ > < □ > < □ > < □ > < □ >

Consider $f(n) = tr(\rho^n)$. We know it only for $n \in \mathcal{N}^+$. The f(z) is a continuation of f(n) to the complex plane. The continuation is not unique. A function

$$\widetilde{f(z)} = f(z) + \phi(z)\Gamma^{-1}(-z)$$

is another continuation:

$$\widetilde{f(n)} = f(n) = tr(\rho^n)$$
 for $n \in \mathcal{N}^+$

There are infinitely many analytical continuations from positive integers to the complex plane.

If one wants to consider only functions with singularities at infinity, then one can consider ϕ as a polynomial of many variables:

$$\phi(z) = P(z, e^{z}, e^{e^{z}}, \ldots)$$

There are infinitely many of those.

Remark: Maybe we know $f(n) = tr(\rho^n)$ only for positive integres n = 1, 2, 3... Maybe zero is excluded. Then we replace $\Gamma(z)$ by $\Gamma(z + 1)$.

< □ > < □ > < □ > < □ > < □ >

Consider different chains: In AKLT the Renyi entropy does not depend on n, see https://arxiv.org/pdf/0802.3221.pdf In XX spin chain the Renyi entropy has simple pole at n = 0, see https://arxiv.org/pdf/quant-ph/0304108.pdf In Fredkin spin chain the Renyi entropy scales (with the size of the block x) differently at different n: log x, \sqrt{x} , x. The dependence on n does not factorize from the dependence on x, see https://arxiv.org/pdf/1806.04049.pdf

イロト イヨト イヨト イヨ