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NORMS OF BOUND STATES 

A. N. Kirillov and V. E. Korepin UDC 536.7+536.145 

The formula for the norms of the Bethe wave functions in the form of a Jacobian 

plays an important role in the computation of the correlation functions. In the 

present paper this formula is generalized to the case of bound states~ 

Introduction 

In the present paper we prove that the square of the norm of a wave function, describing 

bound states, is proportional to a certain Jacobian (see Theorem i). 

The quantum inverse problem method [I] allows us to construct the eigenfunctions of the 

Hamiltonians of integrable models with the aid of the algebraic Bethe Ansatz. We introduce 

some notations~ We consider the case when the dimension of the monodromy matrix T(1) is 

2 x 2: 

T(i)=,/ A(i) \ (i) 
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The quantities ~(~), ~@) , C (~), ~(~) are quantum operators, depending on the spectral pa- 

rameter I, their commutation relations are given with the aid of R-matrices (dimension 4 x 4) 

The structure of the Bethe Ansatz is the same for the R-matrices of the XXX and XXZ Heisen- 

berg models 

In the XXZ case: 

In the XXX case: 

For the sake of definiteness, all the formulas will be given in the XXZ case. 

are played also by the pseudovacuum IO> and the dual pseudovacuum <0 1 . 

the quantum space with the following properties: 

C{~) lo> =o; 

<ols(k) =o; <oI A (A)=~CA)<ol; <ol~(A)=&(k)< ol. 

The vacuum eigenvalues a(k) and d(1) are complex-valued 

trace ~(~)=A~)+~ of the monodromy matrix have the form 

wN(i }) 

functions. 

(4) 

(5) 

Important roles 

These are vectors in 

(6) 

The eigenfunctions of the 

in the case when the parameters hi, ..., A N satisfy the system of transcendental equations 

(STE) 

The quantities lj are called particle speeds. We rewrite the STE in logarithmic form. 

For this we introduce the variables ~k : 
N 

~ g~ ~C~)  + ~ - 

14 

(7) 

(8) 

(9) 

(io) 



Now the system (9) has the form: 

~ = o (~o~ ~)~ (11) 

In [2] one has computed the norms of the eigenfunctions (7), (8): 

N N N N <oi nG.~ n ~lo>=(,,~b ~n 4<x x,II % ( ~ 3  <,=> 

Here  we h a v e  s e t  ( 0 ] 0 >  = i .  The J a c o b i a n  ha s  t h e  fo rm 

~I/~xi=~,.(L(x~+ ~x(x,,x~l)-x(z, z i) <,,) 

We mention now concrete models which are in the considered class. First of all it is the 

XXZ Heisenberg model [3]. For it we have 

Here M is the number of nodes of the lattice. 

Another example is the sine-Gordon lattice model [4]. For it: 

Here h is an arbitrary real parameter. In both cases, T(A) satisfies the involution: 

The cross denotes Hermitian conjugation only of the quantum operators. Formula (17) means 

that in the left-hand side of (12) one has the square of the norm of the eigenfunction in 

the case when under complex conjugation the collection {~j} goes into itself: 

{ ,~i}  = { ' ~ j } ,  (18) 

We recall that[C~Qk),C(~]--__[mLk))m~+>] _-0. We note that formula (12) plays a central role 

at the computation of the correlation functions [5, 6]. 

2. Bound States 

In the above mentioned models one has bound states. Equidistant bound states are formed 

at the limit when the number of nodes tends to infinity; see [7]. We denote the number of 
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particles, joined in one bound state, by v. The collection of the allowed values of ~ de- 

pends on the coupling constant q. The complete classification of the bound states, sometimes 

called strings, are given in [7] for the XXZ Heisenberg model. In a bound state the particle 

speeds are distributed in the following manner: 

, . .  ~ . ~=t~+~C~-~ -~ ) ,  ~=~, (19) 

The quantities I~ are called string speeds. We shall assume that in the string with speed 

I~ there are bound va particles. Usually, the STE (9) are multiplied over all the particles 

occurring in a given string (with respect to a) and one writes a system for the centers of 

the strings: 

(20) 

Here 

%- n, CA~) 

-it + c2,.,., 
o +=< + C g ,  

The system (21) can be rewritten also in the logarithmic form: 

(21) 

(22) 

(:b~. = o ( ~,,od ~-~) (23) 

We consider the Jacobian 

z+=gLcC); E+ x (x',4) 
~=~ *P 0,,={ 

For notations, see (13), (14). We consider the eigenfunction in which there are s bound 

states and in each bound state there are ~a particles. The total number of elementary par- 

ticles is equal to N: 

Below we prove 

THEOREM i. 

N =~i+.,, + g  f, . 

(24) 

(25) 

The square of the norm of the wave function, describing the bound states, 

is proportional to the determinant of the matrix C~b~/9~ ) [see (24)]; moreover, 
P / 

(26) 
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. i o > I  (27) 

Here 

~=~ ~=~ 
(28) 

3. Thermodynamic Limit 

We consider a lattice with M nodes. In the thermodynamic limit M + ~. 

lattices 

For homogeneous 

(29) 

For a bound state of v particles we have 

(30) 

For a finite temperature, the number of bound states for each fixed v tends to infinity in 

the thermodynamic limit [7]. In connection With this, we change somewhat the notations of 

the previous section. We rewrite the system of transcendental equations in the form 

is some collection of integers, Here n~ 

(32) 

The index ~ enumerates the various bound states with same number of particles. 

~*~=%~h~(2,G)+Ex,~o(<,hj)-• (< <) (33) 

In the thermodynamic limit the system of transcendental equations (31) turns into the system 

of integral equations 

O 
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Here ~$(I) is the density distribution of the bound states according to the speeds, while 

~v(X) is the density of the vacancies for the bound states. The thermodynamic limit of the 

determinant in (27) [see also (33)] is equal to 

(36) 

The integral operator, occurring under the determinant symbol, acts on the vector function 

u~(X) 

o r 

(37) 

4. Proof of the Formula for the Bound States 

In order to obtain from (12) formula (27) it is necessary to solve the indeterminacy. 

in formula (12) the product I-T#~})~K) tends to zero at the passage to the bound Indeed, 

states, while ~ C~ ~i~/~)--~o~ since X(~KJ~,)L-~o~ �9 In order to do this accurately, 

we consider the determinant of the matrices Aij, 

N 

=I i k=4 

ANcL ,...>LN, XH')--&o'I:IAzjI, 44 4N ' I  

(38) 

Here Xij = Xji is an arbitrary collection of variables. 

depend on the diagonal elements of the symmetric matrix X; 

tess, we set 

It is easy to see that Aij does not 

therefore, for the sake of definite- 

•  t ,<i, 4 N .  (39) 

We note first of all that A N is a linear function in each of the variables Xij. By virtue 

of the complete symmetry, it is sufficient to show that A N is a linear function of XI2 (when 

all the other variables are fixed). We carry out some transformations of A N . Clearly, X12 oc- 

curs only in the first two rows and in the first two columns. Adding to the first row of 

the matrix Aij all the remaining rows, and then to the first column all the remaining columns, 

we obtain a matrix B~N) (the upper index denotes the dimensions of the matrix), 
ij 

5CN~ ACN~ 

~e,~ I B (N~ . CN~ I = tax i  I = i 

(4o) 

The matrix Bij depends on X12 in a simpler manner. Only the element B22 depends on X12 (this 

is a linear function). Obviously, 
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O i =D" = ~.I" for " >/~ 

a J ~ N 

(41) 

(42) 

The second row and the second column are missing in the matrix ~(N-o Obviously, ~(N-~) is 

the matrix B(N) for which the arguments are changed. Thus, 

= ~x N_4 (L~+L~,L3,...~L~ ; x~i +x~i ' x K,~) 
(43) 

In order to compute the derivative of A N with respect to several xij, it is convenient to 

introduce some notations. Let I = {ii ..... ik} and ]={i1,...~i~l~ i S < i~ (4 ~ S ~ k] be 
K 

two subsets in [i, N] k. We set Xl, J - ~i~ o With the subsets I, J we associate agraph 

F(I, J), defined in the following manner: we mark by points the numbers from ! to N and 

we join by segments the points i s and Js for 1 ! s ! k. Let ~(I~])=~P~ be the decomposition 

of the graph F(I, J) in the union of its connected components. We define ~ =  ~ ~ ~ , 

i running over all the vertices of the graph F~, 

Xg~-~ ~ X (44) 
L<~ k c >  Lk . 

If the graph F(I, J) does not have cycles, we define 

A C i,U) = ]~L~ . 

Here ~ runs over all the connected components of the graph F(I, J). 

struction of the graph F on an example. Let N = 8, k = 4, I = {I, 2, 2, 5}, J = {2, 3, 4, 6}. 

The graph F(I, J) has the following form: 

The g r a p h  F has  f o u r  c o n n e c t e d  componen t s :  

Correspondingly 

1 

X~=XIS +Xas+X~5+X45 + X~6 +X~6 +XB6 +X46 
A (!,~)={t4+ L~+L~+L,4). CL~+L6 ) �9 L v - L8. 

We compute now the derivatives of the determinant A N . To this end we set 

(44a) 

We illustrate the con- 
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=~xi4~ IJ=s=~ ~s,js (45) 

THEOREM 2. If the graph F(!, J) has cycles, then 

"~IJ AN = 0 (46) 

If the graph F(I, J) does not have cycles, then the number of its connected components is 

equal to (N -- k) and 

~I,~ AN -'A(N-k)(L,,~', X~j~). (47) 

Here the index a parametrizes the connected components of the graph F(I, J). 

The proof is carried out by induction on k. The base of the induction is formula (43). 

We carry out the induction step. Let 

We compute ~ ~j hi~ 3. 
The first case: 

has cycles. 

~i,~ AN =AN-K [i,~)=Ai, ;. (48) 

(i, j) lies in a connected component Fa. 

On the other hand, 

Then the graph ~ (I U i, i ~ u j ) 

~ t i  Ai, U-- ~x-; i ,3 
(49) 

since ~X~j = 0 by virtue of the fact that in x~ there occur only those Xk, m for which k 

and m lies in different connected components. 

The second case: ber~,je~, deft Then the graph r(IUb, ~ u i ) has N -- k -- i 

connected components: Fa and F~ are joined by means of (ij). Making use of formula (43), 

we obtain: 

?c~ hi ,;  = A N.k_~(L,~, x ~ f ) .  (50) 

This concludes the induction proof of Theorem 2. 

We obtain now a certain representation for the determinant A N . We Make use of this for 

the linearity of A N with respect to each xij and also of the formula 

N 
A.N(L ~, 0] =2~ I ,~. (51) 

We expand A N in a Taylor series with respect to xij and obtain: 

i) = 
A(I,]) = { ~2 c ,'s ~e~e g=aph r {i,~)does not have cycleSgraph has cycles .  (52) 
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Here we have made use of Theorem I. We return now to the norms of the bound states. We 

consider the partition of the number 

N = ) i + . .  " + ~$  , 9~>/ ~ ( integer). 
(SB) 

We denote by o~j the segment [~,+., .~9~+~r co r respond ing  to  one bound s t a t e  

L h : L L  , x x 
(54) 

=  TF. • i 

The symbol x ~ i  § ~ means t h a t  x j , j +  1 § ~ f o r  a l l  j E ~ i "  A consequence o f  the  f o rmu la  (47)  

and of the linearity of ~N with respect to each xij is the assertion: 

x~.~oo 17.~ • .., ~, x ~ , ~ j  . (55) 

This formula gives us the possibility to solve the indeterminacy in formula (12) and leads 

to formula (27). 

At the conclusion of the paper we give a certain induction relation for A N which may be 

use in the future: 

(56) 
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