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Abstract

The quantum nonlinear Schrodinger equation (one dimensional Bose gas) is con-
sidered. Classification of representations of Yangians with highest rveight vector
permits us to represent correlation function as a determinant of a Fredholm integrai
operator. This integral operator can be treated as the Gelfand-Levitan operator for
some new differentiai equation. These differential equations are written down in the
paper. They generalize the fifth Painlive transcendent, which describe equal time,
zero temperature correlation function of an impenetrable Bose gas. These differen-
tial equations drive the quantum correlation functions of the Bose gas. The Riemann
problem, associated with these differential equations permits us to calculate asymp-
totics of quantum conelation functions. Quantum correlation function (Fredholm
determinant) plays the role of z functions of these new differential equations. For
the impenetrable Bose gas space and time dependent correlation function is equal to
r function of the nonlinear Schrodinger equation itself. For a penetrable Bose gas
(finite coupling constant c) the correlator is r-function of an integro-differentiation
equation.
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O. Introduct ion

The nonlinear Schr<idinger (NS) equation is very welr known :

i jt lb _ -A?0 +2ctl:+4t41
i1trh+ : A?rh+ - 2ct/t+ 4r+ 11,

The Hamiltonian of the model is equal to

(0.2)

where h denotes the chemical potential. The operator for the number of particles e and
momentum P are eoual to

, : 
l* da(o"g+ o,$ + crp+ 4,+ $ - hrh+ rh)

foo
e: I  darh+(a)rh(a)

J-a

p = -+ [* da(g+(a)o,rb - @"rb+@Drh(r)) ,. J-a

In the quantum case the commutation relations are

l$(r, t), rh+ (v,t)J : 5(r - il, lrh @, t),, r|.,(v,,r)l = O .

The bare vacuum is defined by

p()) :  * ( t  q 
"rx 'z-nttr)- '

In this case the density D is equai to

(0.1)

(0.3)

(0 6)

(0.4)

t / (o)10) -6;  (0 l r /+(s) -0 (0.5)

Another name of the model is the one-dimensional Bose gas. The model is exacriy solvable
[1]. We shaii consider a ground state lO) of the model with finite density D. In this
case momenta of the particles fill a one-dimensional Fermi sphere [-g, qj (g is the Fermi
momenta). Thermodynamics of the model at temperature ? > 0 was constructed in [2].
We shall be interested in thermodynamics oniy for an impenetrable Bose gas (c : oo).
In this case the spectrum of the Hamiltonian is equivalent to a free fermion one. In the
state of thermodynamic equilibrium the distribution of particles in the momentum space
are given by the Fermi weight

1f€d^
D- '  I  * ' . '  '  ^ :1

l -*W; c:G, (0 7)



We shall consider different correlation functions in the model. First we shall consider
the impeneirable Bose gas (c : oo). In this case we shall calculate the field correlator

I t  /  r  \  r* /  ,  \ \  -(P(rz , tz ) ! t  ( r l ,  t r  ) )  :
( f2 l r / (12 , tz)rh+ (c1,  /1) lQ) (o s)(0lo)

This is the zero temperature case. Recall that lO) is the ground state with finite density
D and

,h@,t)  =eiHt$(r ,o)"- ' ' ' .  (0.9)

lVe shall calculate also finite-temperature correlation ftrnctions

(rb(sz, tz)rh* (xt ,  t r  ) ) r  =
bQ- a /  r  r1,(rz,  t ) rh+(o r ,  r r  )  ) (0.10)b@-n/t1

We shall consider also many point correlators. It should be noted that the zero-temperature
equal time correlator was calculated in [3-5]. It was proved that it is associated with the
fifth Painibve transcendent. There exist models similar to the impenetrable Bose gas (Ising
model, XY model) where different correlators were calculated [6-9]. Por a penetrable Bose
gas (0 < c < oo) the problem of correlators is especially interesting, because the model is
not equivalent to free fermions, nevertheless we succeed in calculating correlators in this
case (see section 4, 8).

Let us define the simplest correlation function which we calculate here for finite c.
in the ground state of the model particles move in the Brownian way. There exist some
probabilitv

P( ' ) (0.11)

that on the interval L-r,rl there will be no particles (empty place). This probability is
the simplest correlation function and we shall calculate it here.

Calculation of correlation functions consists of two steps. First we represent correla-
tion function as a Fredholm determinant (minor) of some integral operator. (These integral
operators a,re of very special form, they form infinite dimensional group, see part II.) Then
we treat this integral operator as a Gelfand-Levitan [10j operator of some new differential
equation aod derive this differential equation. It follows that correlation functions (Fred-
holm determinant) play the role of r-functions [11] for this new differential equation. A
Riemann problem [11] can be associated with this differential equation, which enables us
to calculate the asymptotics of correlation functions.

The plan of the paper is as follows. In part I we represent correlation functions as
Fredholm determinants. In section 1 we present the Lena.rd formula. In section 2 we
derive the Fredholm determinant for time dependent correlation functions. In section 3 rve
present generalization to the case of many fields. We use the Quantum Inverse Scattering
Method (QISM) [12-16] in section 4 where we derive a Fredholm determinant for finite



coupling constant. The algebraic part of the derivation is associated with enumeration of
representations of Yangians with highest weight vector [17-21].

In part II, starting from Fredholm determinants we derive differential equations rvhich
drive correlation functions. Correlation functions (Fredholm determinants of integral op-
erators) are equal to r-functions of these differential equations, and integral operators play
the role of Gelfand-Levitan operators. This approach is close to 122-251142,43]. First we
consider the impenetrable Bose gas c - oo, In section 5 we construct a differential equation
for the equal time temperature correlator. This is the case most close to the fifth Painlbve
transcendent [5,26]. We get a kind of PainlEve equation with partial derivatives. This is a
new integrable equation. The place of this equation in the general scheme is discussed in

[27]. All ideas are explained in this case. All other cases axe treated similarly, In section 6
we consider the time and space dependent correlator (0.8) (zero temperature case). In this
case the fifth Painlbve equation is deformed into a nonlinear Schrodinger equation (not
selfajoint). In section 7 time-temperature correlators (0.10) are considered. We derive
a three-dimensional completely integrabie system of differential equations (based on NS
equation) for this correlation function. Maybe it is interesting from the point of view of
integrable differential equations. The most interesting results a.re in section 8, where rve
derive an integro-differential equation for correlation function at finite coupling constant c.

In part III we consider asymptotics of correlation functions. All differential equa-
tions derived in Part II are associated with some Riemann problem. This permits us to
calculate the long distance asymptotics of correlation functions. In section 9 we do this
for the example of the equal time finite temperature correlator. In section 10 we present
some formulas of current {irrbAl correlators, obtained together with N.M. Bogoliubov.
Mutry point space and time dependent finite temperature correlators of currents of the
impenetrable Bose gas can be represented as a determinant of matrix.

I. Correlation Functions as FYedholm determinants

in this part we shall represent different correlation functions as Fredholm determinants
(minor) of some integral operators. We shail begin with the impenetrable Bose gas c = co.
In the section 4 of this part we shail derive a Fredholm determinant for finite c(0 < c < oo).
The derivation is similar to the derivation of the determinant formula for norms of Bethe
wave function [16].

1. Lenard formula
First let us consider equal time finite temperature field correlators

trQ- n /r  tP+ (t)rbG 4)$!* Q)rhGz)ly : bQ- a lr7 (1.1)



by z here we denote distance. Let us make a rescaling and introduce new variables

p:+i  a=rfr .  12)
The reason is that correlator depends only on two variables o and p

W+Q)r l ,?z))r=frg7, i l .  (1.3)

To define g let us introduce an integral operator K, it acts on the real axis. The kernel
K(), p) is equal to :

K( \ ,4=.@U##,M (1+)
Here t9()) is Fermi weight

d(I )  -  (1 +exp{A'-  p})- '  .  (1.5)

It is convenient to describe properties of the operator K in terms of functions

f ; ( \ ,s,p) ( i  = *)

(the dependence on r and B will be suppressed). The functions fu()) are defined as
solutions of linear integral equations :

f€
/ , ( ) )  - ' ,J_*K(^,p)f ; (p)dp:e;( I ) ;  i : * . .  (16)

Here 7 is a real parameter and the functions e;()) are given as

e+())-1f i I ) "xp{t i )u} .  (1.7)

Of primary importance will be the matrix of "potentials" B;p(a, p) :

Bix(a,  g)  = t  / -  r , ( ) ) / r ( ) )d)  .  (1.8)
J-a

It is a real symmetric matrix with two independent matrix elements Ba.,- and B--

f r '  -  B++ = B--  ;  T:  B+-:  B-a .  (1 '9)

Now all the notation necessary to express correlators in terms of the operator K has been
introduced. The field correlator (d+( z)rb(-z))r = tEg(r,p) can be represented as

g(x,  g)  -  |a**1r,  
p)  det( l  -  tK) I  - ,=r tn .  (1.10)



The last factor here is a Fredholm determinant. In the paper [27) it is proved that for-
mula (1.10) can be transformed to Lenard formula by means of Fourier transformation.
Correlators of many fields can be represented in the similar way l2T). It is interesting to
mention that det(1 - iK) has meaning as correlator at any complex value of parameter
1. Let us consider

(exp(aQ(z)))r  =

Here o is an arbitrary complex parameter
particles on the interval l- r, "l

t r (  o-  H /T ooQ(z) t" . \ "
t  .  1 i . i i7

and QQ) is the operator of the number of

In [28], [29] it is shown that

QQ):  l "  " |*@),h( i lda 
.

kaQQ))r  _ det(1 _, , tK)
L-eo

(  1.12)

(  1.13)
I_

Especial ly interesting is the value eo:0, ^l - +it describes the probabil i ty (0.11) that
on the interval l-r,") there will be no particles of the Bose gas. This case ̂ n = ! also
describes the level spacing probability distribution function which appears in the theory of
random matrices [30, 5]. There is an interesting connection between formulae (1.10) and
(1.13). From [31] we know the fermionization formula :

(1.14)

In the l.h.s. we have the canonical Bose field (of impenetrable Bose gas), $, is canonicai
Fermi field. so (1.14) shows that for the field correlator (1.1) a : ir. Formula (1.13)
7 - + leads to the correct value of I - f for field correlator (1.10). One should
mention that for zero temperature case ?: 0 the operator in (1.a) turns in

Ko() ,P; = t i t  
?()  

-  P) '
^-  p

It acte on the interval l-q,ql.The probability of empty place (0.11) is equal to

( 1.15)

In section 4 we shall generalize this representation to finite coupling constant. In section 5
we shall derive differential equation which drive equal time finite temperature correlation
function, based on representation (1.3) and (1.10).

.h s(r) =,h,(,)"*o 
{oo | _*ftr>,t,,t-.l,dv}

P(A): aet (r -  l*)



2.

lo\

Time dependent correlator
First let us consider the zero

is a Fermi sphere l -q,  q] ,  with
temperatureT:0case.
Fermi momentum g

In this case the ground. state

(rh$1r1,6; =

In the paper [32] it was proved that :

(ol/r+r;/11; lo)
(CIlo)

(b(, z, t)rl,+ (a r, t1)) - s;ht. ' + Vo) f ,:o (r  1\

Here

tn:t t - tZ t  xt2=xI-  &2 t

G(trr ,  xn) :  [*  d, l ts i t rzt2- izrzt t  .
.r/ _co

The last factor in (2.1) is a Fbedholm determinant with the kerner

vo(A,D - lE(^) -  E(p)
'  r ' '  

L f  l$z- -  2pE(sr 'af4)x ei tzr(A2+p2) v s- | rzr( ' \+p;

This integral operator acts on the interval [_q,qj(), tt e [_q,q]).The flnctiondefined as follows :
E()) - f**au"*P{itry!": ;rrrr} .

Now let us discuss temperature _ time conelators

kh(sz, tz)r l r+ (o t , t r ) )  r  -  t r (e '  H /r  th(az,  t r )$+ @r, f r  ) )t r f f i '
They are given by a simila.r formula

kh(rz, tz)rr ,+(r t , rr))r  = 6drr, .  (*"urr,xrz) * f i )  o"r ,  + vr) f  o=o .
Itlow the integral operator v7 acts on the whore real axis and the kernel vre, t )expressed in terms of trzs

(2.6)

can be

,r@uo1^,D\M).

Another interesting object is the

(*"u', ,erz)* #) 0.,, ,

l) , \

(2 s)

E())  is

(2.4)

(2,5)

v7(), p) =

Here r9(. \ )  :  (1 + exp{)2 _ 0})- t  .
correlator. Let us denote r : it

(2. i )

Euclidean time

,b(r, r) : eH' ?b(r,, 0)"- H, (2 8)



I  r l  \  t+/

\ rh(rz,  rz)$- (rr  ,  r r  ) )  -
t lk '  / '  rb(rr ,  rz) ,p+(r , ,  " ,  ) )

-  
-  ) - - r )*

- tz^-t)}.-, +

r ' )  c)  i

(2.10)

(,  1r \

(3.2)

Let us wrire down the Fredholm determinant formula for it

(v t ( rz,r)$+(t1,  r r ) ) r  = sh' , ,  ( lenrr , r rz)*  3)  o", f  t  +vr l l
\Z?r da/ \  '  ' / ta:o

Here v7 is an integral operator on the whole real axis, with the kernel

.  p,Gn(\2+r,2)_ixne_D)/z . .  I  EtXl  _ 80:4 a iu. ,  i ,  .  )I- i )  r , t -  . .  t  - ' " ' )
,11aff i  ^  14;  n 'nt t t 'ntp)]  t2. i1r

Here xp: r r  -12 i  0 / - r21- T2-t ,  3* i  \z-  - r2r

r6
G(rrr ,  r r r )  :  

J_*Orr- t2L1t2 
- ix.21t

E1D - {*  ,o^ , - r21' \2- ie12A
J-e^-F

In sections 6, 7 we shall derive differential equations, ba.sed on these Fredolm determinants.

3. Manypoint field correlators.
In the paper [33] many field correlator is represented as the Fredholm minor :

N
( l frb, lrr , tz*).h+(r* -rr  tzr-r ))  = , i r  I l - '  Uz*-tzr-)
t=l

N /1 2 \  
(3 '1)

,4 ( ; " ( tzx-,  - tzk,c2k-t  -  tzr , ) .  **)  detKf o -0.

Here K is a Fledholm integral operator acting on the interval l-q,ql.The kernel K()s,,\,^/)
of this operator is equal to

,c()0,)N) = 
l:d)r ... d),v-r 

, '{, [r,^
+ K^(^*,)--r , ]  *o ( i { , r , , l l

*  rz^- t ) , . - r  -  r r - f  *  ) ) .

Here

*rYn^1s1 'E^(p) (3.3)

E-(r) : f:
and

du.^
frexp { ip ' ( t2m-t  -  tz*)  -  i t t ( rz*- t  -  xz^)} (  3.+)



These formuiae represent the correlation function at zero temperature. Integral operatorrf can be represented in the form

K(\ ,p)  _ I  *V(\ ,p)

The kernel of. V has canonical form

(3.5)

(3.6)

(  3.7)

v(A,ri: (+) $ 
e1e)e1Q,)

This wili permit us to derive differential equations which drive correlation function (3.1).To represent the finite temperature correlation function as a Fredholm minor one shouldreplace in (3'1) the operator f by an operator acting on the whole real axis, its kernelbeing equal to :

and

Kr() ,p) :  I  *V7(\ ,p)

vr(\,d= \Mve,fi1ffi.
The kernel y(), p) carl be ta.ken from (B.b).

4, Finite coupling constant correlator
we shail discuss the penetrable Bose gas (finite coupling constant 0 < c < oo) interms of the Quantum Inverse scattering Method. In terms of this method, the model canbe associated with the monodromy matrix

It is matrix 2 x 2 with matrix elements being quantum operators (functions of zl:,tl:+).Their commutation relations are given by the .R_matrix

?(, - (:lil ;lll)
R(\, p,)r(A) o r1p; - r1D s 

"()).R(A, 
p) .

The .R-matrix is a 4 x 4 matrix

(4.1)

(4,2)

/ ffu'))
.  I  g0r,))

R(),p)= 
|  I
\

1

g1t, \)
)

(4 3)

f 0t,, 
^)

tr- \* ic2C ;  f0 ' , \ ) :

8

1-t, - )

Here

g0.r, \) -
1t , - \ (4.1)



The bare 'acuum l0) plays the role of the highest weight vector :

c(A)10) :0 ;  A()) iO) -  o())10) ;  D())10) = d())10) .  (4 5)

The complex valued functions o(,\) and d()) for ItlS model are equal to a()) - expi #\,
d()) : exp{+} (I is the length of periodical box). For the finite coupling constant case
0 < c ( oo, the ground state of the Bose gas with finite density D (for zero temperature) is
still a one-dimensional Fermi sphere [-q,q) (q is the Fermi momentum). Detailed explana-
tions are given for example in [34] (see also references there)). For calculation of correlarion
functions it is necessary to enumerate all 

"()) 
(a.i) with commutation relations given by

(4.2), (4.3) and with highest weight vector (4.5). This is connected with the problem of
enumeration of representation of Yangians (associated with s/2) with highest weight vec-
tor [18]. Solution of this problem can be taken from [21]: there are no restrictions on the
functions a()) and d()) - they are arbitrary functions. To solve the recursion relations
for correlation functions in terms of determinants one should use va.riational derivatives
;fu, ;ab- wittr respect to arbitrary functions c()) and d()). They act from one irre-
ducible representation of Y(st2) with highest weight vector into another. This leads to the
appearance of dual quanum fields

fq/?2\p()) :a()) + J_oo,\t"ff i)u*e,
acting in auxiliary Fock space. Here d and &+ a.re canonical Bose fields

[o()) ,  "+(p)]  
:  d()  -  p)  ;  [ " ( t ) ,  "0 i ]  

= [o*( l ) ,  o+(p)]  :  O

in auxiliary Fock space, and l0) in Fock vacuum of the new space :

a(,\)10) : 0 ; (0la+(,1; : 6 .

It is remarkable that the dual fields (4.6) commute :

l r ( ) ) ,p(p) l  -  o,

det(r - *xl
9

(4.6)

so they can be treated as classical functions. This construction permits us to represent
correlation functions as Fredholm determinants [28],[29]. Let us recall that the simplest
correlation function is the probability P(c) (0.11) that on the interval l-r,r) there will
be no particles. Let us write it down as a Fledholm determinant usinq the dual quantum
fields p())  (4.6)

(0 ldet( /  + r)10)

(4. i )

/4 R\

(4.e)

P(x) - (1,10)



,t"tn 
integrar operators 7 and K acton the interval [--q,q]. The kernel of /{(),pr) is equal

K(\ ,  p) :  ,  ,?"c.+(A_p)2'
The kernel of Z()1,,\2) is expressed in terms of the dual fields :

(+.11)

V()t ,  )z)  = \ .8f f i )

This is the answer. Remember that in the limit c _) oo (q_fixed)
p())*0;  K-*0i  c_+oo
v()r , , )z)  

-  -  1 s ins()r  -  )1) '
j r  Ar_)z

This is in accordance with (1.15). Let us rewrite v(Ar)2) in the form

z() , ,  lz)  =,  
/o* 

d,se-" . {  e+(, l r )e-( . l l )  :  9+(,rz)e_(,rr)  
}

( ) ,  -  )2)y()r ,  Az) :  i . r ,^ ,  )Eiez)
,=l

e+())  =^lT ( . . .- t \^ ' ' -Vn""et t ( i r )* is)+]r f r ) ) )  .  (+.rb)
*r l, ,"orlrunr"d in a form similarto c = m but we have an additional variable s.

rr' Differential equations for correration functionsNow we shall use Fbedholm determinants (of integrar operators obtained in part I) toderive differential equations, which drive co*elation firnctions,. one should note that allFredholm integral operators which occur have very speciar kernels v(\r,A2). The product(Ar - A2)y(lr,)2) is equar to the sum of one-d.imensional projectors

-c ei tAr *  *p( l  t )  .  
" - ix \2-  

le(^z) l rv(Iul-c l- i'e)A2v(I,izAzle
(4 1r\

(4.13)

(4.14)

(r r .0)
(for finite coupling constant the surshourd arso obev,f. .".".,T",:l Di, ;ffiii 

tl 
;r:TT?;dTT::j*":*call "completely integrable"' Thtloduct of two such operators has the sarne form. Let

ytr)(.\r, )r) = f "jt)(,rt )er(t)(rr)
' /  Zr

t=7 At -  \z

y(z) ()r, )z) = f '["rr: I . 4lr)(rrl
It=l  ^ l  -  42

10

(r  r . r )



The product of two such operators is equal to

fq

/  t - , t \ ( ) r ,uyYQ)1r,  ) r1d,  :  Y(r)1tr , , ) r )  :
r -q

. ,  ( "

) r - lz  lL-- '
( J=' ,

M)

I ' f ' ( ) , )El?)() , ) l
K=t )

llere

( r  r .2)

(/1.3)

( I1.4)

(rr.6)

(r  r .7)

(/r.8)

This is a very important property, which shows that the resolvent of this operator can
be constructed universally, as follows. Let us take kernel operator (II.0). We introduce
the resolvent R in the following way

( I  +v)( I  -  R):  I  ;  ( I  +v)R-v .

M
Ej')()) : t n*\e) [' *L3]tt )"*){,)

K=l J-Ou- ' t '  J

N

,f '){r) : i"!'){r) [' *":D1,7"ft)1,7 .
)=l  J-ol-u r

^fqtf 1x1 + | v(^, p)f fQidp: ei())
J-q

_fc
f  ! (^)  + |  v(p,^)f  !G')dp: Ej(r)  .

'  J-q

Then one carl Drove the theorem that

Let us write down the integral equation for the kernel of the resolvent .R()1,)2):

f t (Ar,  )z)  + fo ,Qr, ,u)R(v,) ,2)d,u:  V()r ,  )z)  .  ( / / .5)
J-q

To write down R(lt, ,\2) in explicit form let us introduce function./il(f ) a.nd /rR1,l) by the
following integral equations :

Formulae (IL2)-(II .8) show that operators (1 + V) (here I/ is given by (II .0) or (II . i)
form infinite dimensional group. This permits us to derive differentiai equations (from

integral one), its Lax representation and the associated Riemann problem. We shall do
this in more detail for equai time finite-temperature correlators in section 5. All other
cases are treated in a similar way. We shall construct differential equations for which these

"completely integrable"integral operators play the role of Gelfand-Levitan operators. One

11



should mention that direct quantization of the Gelfand-Levitan equation was proposed in
[35]. It will be interesting to understand the connections between these two approaches.

5. Finite-temperature equal time correlator
Let us come back to section 1. The finite-temperature equal time correlators of an

impenetrable Bose gas were described as Fredholm determinants det(I- tK) of. an integral
operator K (on the real axis)

K(\, ri: uae{$A'M= W - K(rt,)) (b 1)
Here

e+(^) :  t6-^)"*r^,  (5.2)

and
d(A) :  (1 + exp(A' -  p))- '  .

F\rnctions /*(A) are constructed by (1.6)

roo
/r())  -^,  

J_*K(\ ,p) f+0')dp -e1( l ) .  (53)

Let us define the inverse operator as follows

( I -^rK)( I+1R1 -r i  ( r -1K)R-K. (54)

The kernel of the resolvent .R is equal to

R(),p) : /*())/-!ry).- /-.(r)/+(p) : ft(p, )) . (b.b)
2i(\ - p,)

To construct a nonlinea^r difrerential equation for .B11 (see (1.8)), first let us construct a
Lax representation of this equation. Let us difierentiate (5.3) with respect to o, the result
can be written in the vector form :

A i +

f r f  =( i \os+Q)l  .  (5.6)

Here /is a two-component vector-function

/ - ( . r )  :  f  /+()))  (b i )
\ / - ( ) )  /

andQis2x2matr ix
/  o B++\

Q: l  |  (58)
\B++ o /

12



Here rve used that arK(.\,pr) is sum of one-dimensional projectors

2A,K(^,p) :  e+())"_(t t )  + e_())e. ' . (p)  .

We shall consider (5.6) as the .D operator; to construct the M opertor we apply (Z\00 + 0x)
to the equation (5.3). This gives the M operator

Q^Ap+ ar) f :  ( ixo3 -  iAgV)i (5 e)

Here

, :  ( : . -  
- : . .  

)  (5 10)
\B++ -B+- /

and we used (2)0p + 0r)t9()) : 0. Write now the compatibiiity conditions for the system
(5.6) and (5.e)

lA'- i ' ) ,os-Q,2\0s *0r - i . \as *  i7pVl:g (5.11)

at any ,\. We arrive at the equations

0'B+-:  81+

opB'**:1* , ,  (W).  
(5 12)

Here 0p is a derivative with respect to our independent variable g: *.Let us denote by
o(t ,  0)

o(r, 0) : ln det(I - 1K) . (5.13)

One can show [27] that ol3-s - 0

0|o -  -B'**  ,  0,o -  -Ba- (b.14)

and a itself satisfies the differential equation

(0p02,o)2 - -a@1o)l2a0e0,o * (0p0,o)2 - 20eol . (o.  rD/

The initial data for this equation can be extracted from the Fredholm determinant itself

I im B++: l im a :  0
l--cp 0--q

f  /  r  \2 -B++:t  loO)d)+'^f  (  /o1. lya. l )  +o1r2;
J \ /  /  (5.16)

c-r0
f 12 /  t  \2o : -r1 J ot^l - ? (/ 0(^)d^) + o(r3) .

13



This fixes the solution uniquely [27] and describes completely the correlarion function
( i .10),  i1.3).  I t  is  interest ing to ment ion that at  T = 0 the value o :  ( .nder( /  _ ^t I ; )
depends only on the product of variables r and, 1/p; r = r\,[g: r,,,f|. Equation (b.1b) is
conveniently rewritten for a function

One has

This is the famous fifth Painibve transcendent of [5]. To conclude this section. let us
present a matrix Riemann problem, associated with these equations [271. consider the
2 x 2 matrix 1()) function of ).

1) it is holomorphic at Im(\) > 0 and /rn()) < 0
2)  x(*)  : r : ( :91.(0 1) '
3) det 1(.\) I 0 V)
4) the boundary values X+()) at the real zucis ) e R are related

oo(r)-r f lUdet( /  -^tK)

(r"t)' : -4(roL - os)( ro'o + GDz - 4oo)

x-(^) : x+(.\)G()) ; rm\: 0

G())  -  r  + r1r e+())e-(^)  - '1())  )
\ e'_(^) -eae)e_e) f

This Riemann problem permits one to calculate the long distance asymptotics of cor-
relators' A Riemann problem can be associated with each of the differential equations
constructed below' Let us mention also that differentiai equations for many point
correlators are constructed in [22].

6. Time dependent correlator
Here we shall take the time correlator of section 2 and derive a d.ifferential equation

which drives this correlator. This will be the classical nonlinear Schrodinger equation. So
we shall  study (rb(rr,tz)rh+(r1tr)), (c: oo) for Euclidean t ime

\o.r / /

(5.18)

(5.1e)

(6.1)

(6.2)

t t - tz=2ir ;  r )0;  cr-a2=2xi  c)0.

Let us evaluate the derivative in (2.1)

W,Q)rh+Q)l  = U,@z,t)r / ,+(r t  r r ) )  :  
, -J.rz,o '6. ' .1det( /  aVo) .

Here % is the integral operator on the interval l-q,ql (for b..a see (6.10)):

7o(), r")f{Ddp - er()) .

I4

/*(r) * I:, (6.3)



Here
r-())  :  ! " tx21;"^ ;  r+())  :  e-()) .  E())

E())  :  I  
o ' r"-2ru2-2ixu

J u-A
The resolvent R is defined as usual

The kernel t i ;(),  1l) can be represented in the form :

l /s() ,  p)  : e a( ))e -(pr)  -  e1 (p)e- (  ) )
) , -  pt

( I  +v)( I -E) : /  ;  ( I  +V)n:v

Its kernel can be represented in terms of functions fu (6.8)

E(), rr) - /+(r)/-(P) - /+(P)/-(r) .\ -1r

It is important to introduce potentials

r6 J)

(6 5)

(  o.o)

(R't \

(6 3)

(6.e)

(6.10)

(o.r l l

(6.12)

(6.13)

/A 14\

Let us introduce also b**

Bix : llror",ru)f x1D ; j,te : !

Cir : 
I_ro, rrei|.r)f r(tr) .

6++= B++-G

, :  
I*  

d,1ts-2 ' r . .2-2ix1t

Let us mention now some symmetry properties : First of all V is symmetric

v(4, p) : v(p, \) ;  f t(), p) - f t(p,l)

Bir  = Bki  .

Second, there exists a complex involution

a-())  :  e-(-))  ;  e+())  :  -e+(-))  ; /+(-)) :  +/+())

R(-) '  -p)  .VQ, p):  Iz(- . \ ,  -p)  ; ft(), pr) =

and B-- are real

B++: B++;5** :  b++ ;E-- :  B--

15
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but Br.- is pure imaginary

Third, n-e mention also that

F*- = - B+-

e -- -  -C-_; e +_ = C+_;
C-+=C+-+B++B__-Bi_

(6.16)

t  o.1 / )

(6.1 8)

(6.1e)

time r. This

(6.20)

(6.21)

(62r\

d++ = -C+*;
d-* = C-+;

6. a. Lax representation
In this subsection we

equation, which will drive
and define vector-function

Here

This gives the nonlinear Schrcjdinger equation

( ap ta2
)  Eo--  :  - ;hB__ -  4B!_b++
)
[ #r** = i{;rb** +  bz++B--

shall derive a Loc representation, for a nonfinear differentialthe correiator (6.2). First we take the solutions of (6.3) /+())

/-()) =- f /+(^) )
\ /_())  /

It is easy to differentiate (6.3) with respect to c, because *voe,,,) is equai to the sumof one-dimensional projectors (similar to section b). The result is the z opertor :

(* 
- 

iAos - roa) r-: o

o: (,:- 1.)
see (6'10), (6.9). In a similar way one can difierentiate (6.3) with respect togives the M operator :

( !  * , ,  \
\a;  *  A'o3 -2^Q -v) i=o .

Here

v = (2b++B-- io 'baa 
)

\  _ia"B__ _28__b++ )Compatibility condition for (6.1g) and (6.20) leads to :
I  O a ,  r? I
Ln * f)o3 - ztQ; # * \2os - 2^A _ vl

16
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Initial data r : 0 for these equations can be extracted from the description [5]
t ime correlator (y'+(r)rb(-c)).This also gies the expression for C++ and C--

I  C**:  l ) ,Baa * B++ .B+- -zGB+-
1
I  C--  = - ;A,B--  -  B+-B--

Direct differentiation of (6.8) (using (6.3)) gives also

a
TrB*- 

=2iB--b++ .

This permits us to express matrix V (6.21) in terms of the matrix [/

u:(-Ba- ' **)
\  -B--  B+- /

V =i)aU .

y=-zi1+-,  * :4b++B--Oa Ot '

oon
* 

:  -2GB__ -  2(C+_ + C_+) ,

Straightforward calculations involving (6,3), (6.8), (6.9) show aiso that

6. b. Expression for the correlation firnction in terms of NS equation.
The field correlator (6.2) is equal to the product of two factors 611 and det(f t Vo)

One can get a differential equation for b11 by substituting one of eq. (6.23) into another

, a ( zL** - u'I*\ 
- 

r' ( ?L**- ai*\ L ( zL** -u,l*\'
'a ; \ - - t1-)*w\r f  )+u++\f f1 

-o i62si

To characterize det(/ t7 V") let us introduce the notation

o : tndet(/ * Vo) . (6.2e)

At r : 0, function o(c) was described in [5]. Derivatives of o(c, r) can be expressed in
terms of solutions of the NS equation (6,23)

of equal

(6.24)

(6.25)

(6.26)

(6.27)

(6.30)

(6.31)

T7

(6.32)



This set of equations completely describes the correlator (rh@",t2)rh+(tt, tr)). The associ-
ated Riemann problem can be constructed similar to section 5. This permits us to evaluate
asymptotics.

7. Finite temperature time correlator.
Here we shail consider the temperature time correlator of an impenetrable Bose gas

c : oor \rb@r,tz)rb+ (rt, f r ))r. The Fredholm determinant representation can be extracted
from section 2. Let us consider Euclidean time

tr- tz:Zir ;  z)0;  ot-&z-2x;  r )0.  (7.1)

Here we shall use the notation of section 6. We shall use also the variable I : *, the same
as in (1.2) and section 5, and the Fermi weight

f ( ) )  :  (1 + exp{I ,  -  p})- ,  .

So
(rlr@r,tz)rh+ (rr, tr ))r : -J"z'gb11 det(.I a Vr) ,

Herc V7 is an integral operator on the whole real ocis

f@
/+()) * J_*Vr(\, rt)f+!r)dp: e+())

(7.2)

(  7.3)

(7.+1

rvith the kernel:
v7(), p) -

eaQ)e-(p,)  -  ea(p)e-())
()-p)

: V7(p),) (  7.5)

I  r .o)

( i .7)

(6.7).

ancl
1-. - ( r )  :  : r ,6- te ' \ '+ i" \ ;  r+( l )  :  e-( l )E(r)

E())  = f  4u-2rv2-2ixu i  G: [*  ar"-"1 '2-2ix1t  .
J-*U-A J-oo

The functions /a(,\) a.re defined by (7.4) and the kernel of the resolvent is given by
The potentials

le leB;r :  I  , ; } t ) f r ! t )dpiCi* :  I  dt t" ,0t) fx0t) t ,
J-m J-e.

(  7.8)

now depend on three variables a,r0.The symmetry properties (6.11)-(6.17) are still valid.

7. a. Lax representation.
Let us define a vector-function, as usu

/-()) :

al

/ /+(r) \t f
\  / - ( ) )  /

18
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Differentiate (7.4) with respect to r,r;  also apply the operatot (2\0s + 0r) (as in (b g)).
In this way we get three operators

i1. l ; / :o;  . , l . r1r ; f :6 '  .nr1r; / :0.  (7.10)

The operators I and M are the same as in (6.18) and (6.20)

i1. ly :  * , .  i \q -  2 ie (7 11)

. l / ( ) )  :**42a3 -2^e-V. (7.12)

Formulae (6.i9), (6.21), (6.27) and (6.26) are sti l l  valid. The operator N is similar to (b.9),
but now we have

^aa.\ ' ( ) )  :2^AA + 6T *2)ros{ ixos-4rQ -2A0U. (7.13)

Here
( 0 6++) (-B+_ 6++)a-  l^  ^ l ;  u-  |  I  e.r4)(B-- 0 )  ( -B__ B*_)

7. b. Three dimensional completely integrable differential equation.
AII three operators L,M,.n{ should commute at a.rbitrary value of spectral parameter

) ' [ r ( ) ) '  M(^)] :  0, [ t r ( ) ,N()) ]  = 0 and [M(l) ,N()) ]  -  0.  Now iet  us wr i te down
nonlinear differential equations for the potentials B;1, and. C;1j. First of all (6.23)-(6.25)
are still valid. To write down a complete set of equations we introduce the notation :

g-  :  e-z 'o B--  i  g+ = e2'Fb++ (7.1b)

n(a,r ,9)  = g+g- ;  p(a,r ,  B) = 9-0rg+ -  9+0"9- .  (7.16)

First of all the NS equations are va.lid
( i) 0,e+ :2pg+ * iA?s* + agr+s-
(ii) 0,9- = -2pg- - iA?s- - 4s2_s+ (T.LT)

(ii i) 2n : p'
The first equation containing the B derivative looks like

oPo'g+ - oso-_'g- =e(x,,r,g) . (7.1g)g+ g-

Here we define a new function ?(x,r,B). The two remaining equations look like

o,?*4opp_o 
,r . , .n. ,

A,p*2*80pn -0
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Initiai data r = 0 for this equations can be extracted from equal time temperature corre-
lator (r i ,+(r){(-r) ) r ,  see sect ions 1,  5.  So (7.17)-(7.19) are a complete set  of  equat ions
for ba-p and B--. Other potentials are defined in terms of these two. 't'he derivatives of
81- ale equal  to :  

or l+-  :2 in , ,orB1- -  ip

LPB*-:- \ r ' - i ,
The potentials C6 are still given by the expression (6.24), (6.32).

7. c. Expression for correlation function.
The conelator (7.3) is equal to the product of g++ and eo

(  7.20 )

(7.22)

(7.23)

o : tn det(f * Vr) . ( i .21)

It is easy to get an equation involving only g.u because g- can be expressed, from(7.1ZXi)

One can substitute this expression in all other equations of (7.17)-(7.19) to get a complete
set of equations for 91. At r : 0, a was described at section 5, its derivatives can be
expressed in terms of the potentials B;*,,C;r

8e-:  2 i+-4Pg-+*o2g+
s+

X = -2iBa-t# -- -2GB-- - 2(c+-+ c-+)

fr : -2r0p(C1- + C-+) -2ia7eB,r- - 2rB--7pB--+
*2r(8a,, -2G)A\B-- + 2(ApB++)@eB__) -2(0eB+_)2 0.24)

This completely defines the correlation function. The corresponding Riemann problem
(similar to section 5) also can be constructed.

8. Integro'differentiai equation for the finite coupling correlator.
Here we shall derive trhe integro-differential equation which drives the simplest cor-

relator at finite coupling 0 < c ( m. This is probability of absence of particles on the
interval  [ - r , r )  [see (4.10, (0.11)]  ;

P(x) - (0 ldet( /  + Y)10) (8 1)
det( I  -  *K)

Only the numerator depend on the distance r. So we shall investigate here

det(/ + v) .

20
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The integral operator V acts on the interval [-q, q], i ts kernel ! ' ()r,  )2) is given b.,* (4.12).
it depends on lhe dual quantum field p()) (4.6), but it commutes at different vaiues of
spectral parameter" [p()), p1t\ = 0 so we sha]l treat rp()) and V()1, )r) (4.12) as classical
unknorvn functions. Let us use (4.14) as representations for

V()r, )z) : ;  fo* a"{" e+(. \ r  ls)e-()z ls)  -  e+(. \z ls )e-()r  ls)
)r- lz

(E.3)
e1() ls)  -

one should emphasi ze that this l/oo has the canonical form
the integrul /0"" ds, so the formulae of previous section carr
the resolvent in the standard wav

\*onj
(II.0) with f '1, repiaced b1'

aJ_L

be generalized. Let us define

( r+v)(r-R): /  ( r+v)a_v
fc

E()t , lz)  + |  V(Xr,)3)R()3,)z)d)s :  V()r , )z)  .
J-q

It is symmetric
7( l r ,  )z)  :  l / ( I2,11) ;  f t ( ) r ,  )z)  :  R(12, )1) .

To write down an explicit formulae for R, we introduce functions fu(lls) :

fc
/+(^ l r )  *  J_"V(^,p)f+(pls)dp: e+() ls)  .

The kernel of the resolvent can be represented in the form :

f t(tr,  p) : i(A - D-t [* or"- '"{/+(rlr)/-(pl") - /-(Al")/+(plr)}Jo

itlow define potentials .B;1(s, t)

fcBir(s, r) = 
J_odp.ei(y, ls)ft (plr) ,  i , tc: t

not it is the kernel of matrix integral operator. It is symmetric

/R 4)

(6.0/

lXfr l

(8.7)

lx,\ t

B l r (s,  t )  = Br i ( t ,  s) (8.e)

Differentiate (8'6) with respect to o, to construct the .t operator (it is an integral operator):

A:. .  foo

i l f  } l t) - i)ozfl)| i l  + z 
J, d,se-"'Q(t, s)/-() ls) .

2t
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Here rve introduce the 2 component vector / and

/-() ls) : [  
/+()l ') ' l  e(rrs; :(  / - ( r l ' )  J

matrix Q

[  
"--0, , , , ,  

t**ot ' ' t '  

] '
Q(t ,s)  -  Q(s, f )  .

Now let us differentiate (8.6) with respect to g. We find

Here

Finaily we
we get

Af(  fa 4

ao, .trlt) * o J, dse-""u(t, s)/(,\ ls) - $,

l , l ( t ,s)  -  A+(s ' t )  *  A,  
! t ' t )

^-q ^+q

A+(r,  , ) :  ( / - (q ls) /+(ql t )  - /+(qls) /+(el t )  
)  ,

\  / -(qls)/-(ql t)  - /+(qls)/-(ql t) ,  /
f@

O 
J, 

dse-" Aa(11, s).4a(s, u) :  0,

( f-(-ql ' ) /+(-qlt)  - /+(-ql ' ) /+(-qlt)  \A-(r , r )  :  |  |
\  / -(-qls) f  -(-ql t)  - /+(-qls) f  -(-ql t)  .  /

write the compatibility condition for equations (8.10) and (8.

&t ** rr, t) : f + (ql.s ) /+ ( q I t ) + /+ ( - q l, ) /+ ( - q I r ),

* 
" 

-  -(r ,  t)  :  f  -  (qls )/-  (  q l t)  + /-  (  -  q I  s )/-  (  -q l t)0q

af-
*f  +klt)  -  iqf (ql t)  *,  

J, 
dse- '"  B,,q (t ,  s)/-(qls),

a rco
6rf -klt) :  - iqf -(qlt) +2 J, 

dse-'"8--(t '  s)f i(qls),
a roo
*f +Gdt) - - iqf a(-qlt) *, J, 

dse-'" Bqq (t '  t)/- eql '),
A /P€
gf -Gt l t )  -  iqf  - ( -q l t )  * ,  Jo 

dse- ' "  B--( t ' ' ) /+(-ql ' )  .

(8.11)

rR 1t \

(8.13)

(8.14)

(8.15)

12). In this rvay

( 8.16)

(  8.17)

This is a complete set of equations for 6 unknown functions ;

B++(r, t )  ;  B--(s, t )  ;  /+(ql ' )  ;  / - (q l")  ;  /+(-qlr)  ;  / - ( -q l")  .

The associated Riemann problem can be constructed in a way similar to section 5. So
(8.16) and (8.17) is our integro-diferential equation, which drives the correlation function
at finite coupling constant.
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8. a. Correlation function,.
To study the space dependence of P(r) (8.1), we shall  express det(/ + Iz) (E.2) in

terms of solutions of (8.16) and (8.17). First of a1l we have as usual

af6
6h det( /  + V) -  - ,  

J,  
dse- ' "B1-(s,  s)  (S. iS)

Differentiating (8.6) and (8.8) with respect to o and g we obtain

afe
*"*-( t , ,4 

=,  
Jo 

dte-" tBaq (s,r)B--(r ,s)  (8,19)

&t*-rr ,s) 
:  /+(els)/-(qls) + /+(-qls)/-(-qlr)  . (8.20)

Even more important is the derivative with respect to g. (We know that (.ndet(f * 7) - 3
at  q :0)

(8.21)

(9,  t r \

(8 23)

n
frn"det(I + Y) - R(q,q) * R(-q, -q) .

These are diagonal values of the resolvent on the edges. From (8.7) we have

R(q,q) = o Io* dse-" l l - tolr)a^/+() lr) l^=o - /+(ql")0rl-(r lr) l^=o]

Here r.h.s. can be calculated from (8.12) (8.13) at I  - g.

R(q, q) :  i  [*  dse- '" l f  -(qls)Lcf +klr) -  /+(qls)00/-(qls)]+
Jo

1 (  f@ )2*  U \J,  
dse-"" l fa(qls)/-(-ql ' )  -  / -(ql") /*(-ql ' ) l  i

R(-q,-q) :  o Ir*  dse- '" l f  a(-qls)Lqf -(-qlr)  -  / -(-ql"  )0cf+(-qls) l+
't  (  / 'oo )2.  E t/ ,  dse-"" l fa(ql")/-(-ql ' )  -  /-(ql 'U*(-qt ') l i

In this way we have expressed ftl.ndet(/* V) in terms of the solution of the system (8.17).
To finish the program one should evaluate the long distance asymptotics of det(f * V) at
c -) oo and make normal ordering with respect to quantum operators d()), a+ Q,t) entering
rp()) (4.6) (that is, we must calculate the expectation value with respect to the Fock
vacuum l0) in dual Fock space).

8. a. The operator Riemann-Hilbert problem
In this section we present the Riemann-Hilbert problem which corresponds to the

integrable non-linear system (8.16), (8.17). The latter is a system of integral-differential

23



equations' which is why the corresponding Riemann-Hilbert problem will be an integral-
operator-value problem. One can say that the constructions of this section are the natural
generalizations of the techniques of [5,27] to the infinitely-dimensional case.

Consider the integral-operator-valued function at real f (R is real axis):

c())  -  I+O(qz -Ar)g()) ,  )€ R,
where the matrix-kernel g()ls,s') of the integral operator 9(r) is given by:

g() ls,  s ' )  = +2n (  eaQls)e-( l l ' ' ) '  -e1() ls)e*() l t ' )  
)

\e-(r ls)e_() l r , ) ,  -e_() ls)e*()1",) /

e1() ls)  :  , l  *exp{f f ) ( r  *  s)  *  } r ( .1) i
All our operators are integral operators in the Lz C R+,e-'". We propose that the operator
G('\) as the "conjugation matrix"for an infinite dimension Riemann-Hilbert problem rvhich
is the problem to construct the integral operator-valued fi:nction 1()) with the followine
properties:

1. X()) is analytic for fm) ) 0 or ^l.rn) < 0.
2' x-()) - x+())G()),/m()):0, and 1* are the boundary values of function 1()) as

)eRl i0.
3. X()) -* .f as ) -* oo.

In terms of the corresponding kernels the properties 1-3 can be rewritten in the fol-
iowing way:
P1' 1(,\ls,s') is an analytic function of ,\ in the half planes Im) > 0 or lrn) < 0 for all

S, S' '

P2.  X-( . \ ls ,s ' )  :  I f ,  dt , , " -""ct*( , \ ls ,s, , )G(. \1s, , ,s,)  :  X+() ls,s,)  + 2r0(qz _ )r)  ,
x f"" e- st 'c dst I X+ () lr ,  s,,)g(,\ ls,,s,).

P3. y() ls.s ' )= ( t  n\
'  ( ;  iJ  uf t  -s ' )s ' ' "*A-1{r( ' , ' ' )+ ' . . ,  as l - r6e.

Suppoee that the solution of the Riemann-Hilbert problem 1-3 exists and unique.
Then we shall show that the function

?/()) :  x( . \ )E(r) ,
where

E() ls,  t ' )  :  6( t  -  s ' )e i l ( '+rr)oa 
"s '  

c,

satisfies the integral-operator-value linear system in the form of (8.10),(8.12), We begin
with the e-equation. Applying the standard reasoning (see,m for example l27l) based on
Liouville's theorem and on the r independence of the conjugation integral operator,

Go())  :  E-L())G())E())  ,
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we have the equality,
A,rb(^)rb '  t ( ) )  = i , \ Io + Lro ,  (8.21)

rvhere -Is(s,s') = 6(s - s')e' '"o, and Uo is independent of ). Rewriting (S.2a) in the form.

O. l t (Als,s ' )  = i )osl() ls,  r ' )  + / -  " - ' "  "ur(r ,  s")y ' ( ) ls"  ,  s ' )ds" .  (s.2b)
Jo

\\re see that

B;(s,  , ' ) :  fo e;() ls) f t ( ) ls ' )d) ,  Uo(r ,  , ' ) :  i l rbr(s,s ' ) ,o3]  ,  (3.26)
J-q

rvhere 4r(s,s') is the fi.rst coeffi.cient in the series P3. So we obtained the first equation of
the system (8.10). Note that we also have the equalities

B++(r,  st)  -  - i fu1(s,  s ' ) ] rz ,
B--( t ,s ' )  :  * i l rh(s,  s ' ) ]zr

(8.27)

(8.2e)

I /o(r ,  r '1=Z( 
o +B+*)(r ," ' , ) .

\+a--  o /
Let us now study the g-derivative of the functiorL th. To do this it is convenient to

consider the integral operator valued function do()) with the kernel,

, /o() ls.r ' ; - f01,  -s ' )s" ' ' - : " '^)+q (0 1\ l  /  " -c( \ /2 0 \
L- ' -  -  ) -  , ; t " f i  lo 6 J l  (  _s-ve)/z "v{xtn )

It is easy to check that for all real ) the following conjugation condition is satisfies.

,r ;( l )  : l roi( I)co(l)  .

Then we can represent the integral operator {(f) in the neighbourhood of the interval

l-q,ql in the form,
d()) :, i(r),r/o(r) , rR ,R\

where /()) is singlevalued and analytic in that neighbourhood. Note that the representa-
tion (8.28) is just the infinite dimension analogue of the basic formulae of the article [27].
Just as in this article we conclude from (8,28) that,

iaq$Q)$- ' ( r ) -  #r+ht ,

A+:,  
^! to(^ 

+ q), i ( r )aq{o(}){0 1(r) i - t ( ) )
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Note that the kernels of the integral operators /; t()) and,/-r()) are described by'

u; t { ) ls ,  " ' )  
:  (

\  e-r , ( r ) /z e-e(^)12 /  (g.31)

[ r , ,  -s '1", ' ,+f ir ,(H) tS l) ]
,/- ' ( ) ls ,  , \  = (  {zz(r ls"  s)  - r l12(} ls"  s)  

)
\ - .prr() ls ' ,s)  r /11() ls ' ,s)  /

The first of these equalities is obvious, the second one follows from the identity.

G- ' ( ) )  -  |  -  0(q '  - r ' )e())  .

This identity is a direct corollary of the important reiation

e2())  -  0 .

Ittrote also that from (8.31) we have

l0q,ho(\) ,b; ' ( ) ) l ( r ,s ' ) : -3(- ! - -  
1 \  (o 1\

,  2n\^-qts. , l ' )  t ;  rJ (833)

Returning to the integral operators A.u we obtain from (8.30-8.33) that

*  l r*  fo* dr"drr t t " - {s"+t" ' ) '0(+glr , r")  [3 I )  t - t ( tg ls" 's ' )
.f@: * lo* d,r""-,"",i,(*qlr.r") [ S l) lo* d,""-e"cg-L(*q1,",,')

: t* 
lo* dr,,"-r""rb(*qls,r,,, ( :::::'rr', :) 

,.

. .  (  -s-vGi l /z sr(*e)/z \  f t  0r , , "_r , , " rh_r( tg l r , , ,  s,)  =* [  o o ) 'n
( f +(xels)/-(tqls'), -/+(tql ')/+(+ql ' ' )  \

ls) /+(tqls ' )  /  '

where we set:

/+() ls)  -  [*  4r t  " -s 'c lxrr() l r ,  s ' )ea() ls ' )  t  xrz() ls,  s ' )e-() ls ' ) ]
r  o (s.31)

/-() ls)  :  [*  O" '"-"  [xrr() l r ,  s ' )ea(Als ' )  *  xzz() ls,  s ' )e-() ls ' ) ]
Jo

By this formulae the reconstruction of the Lax representation (8.12) from the

Riemann-Hilbert problem 1-3 is finished.

(s.32)
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Our last task is to shorv that the formulae (8.27) and (8.34) give us just the same
functions B*+(t, s'),  B--(s. s') and /+(f l t) as we had in the previous section. To do this
let us consider the singular integral equation equivalent to the probrem 1-3. It has the
form

x+()) - I - Ll2ri l : ,#x+iisQ| (8 35)

Set
o*())  :x+(^)?()) ,  (8.36)

'rvhere
?() ls,r ' )  :  r ( ) ls)6(s -  s ' )e* ' ' "  ,

r ( ) ls)  :  ( t  ea( ' t ls) \
'  \  o e-() ls) /

Using the function O+()) equation (8.35) can be rewritten in the following way :

o+()) : 
"()) 

- t lztr i  fo or, ,=o+(p)?-t 1r)g1Dr(x) .
J-o F -  

^ 
-  i0 -

Note that

(T- '(p)g(DrQD}r,. \ ls,  s ')  :  r-1 (plt)gj t l t ,  s ')r() ls ')

/  o,  o \=*2r l  I
\ . - (p l r ' ) ,  e-(pls ' )ea(I ls ' )  -  r+(plr ' )  e-( \ ls ' )  /

So, for the matrix elements O,+r(,lls, s') we have:

Or+r( , t fs,r ' ) :6(s -  s ' )s ' ' "  * i  [o -  
d!  

=;  [*  0"""- ' ""Q{r( t l " ,s")e-(pls ' ) ,
J-q F- A-?'u Jo

Or+r( . l ls ,  s ' )  :  e+() ls)6(s -  , ' ) r " ' "+

* i  fo 4 [*  or""-" ' "olr(pr ls,s")x
J-qF- ' tJo

x [e-(pls ' )e1() ls ' )  -  e+(pls ' )e-() ls ' ) ] ,  (8.g7)
ofr ( , l ls,  s ')  :  f i  [o 

orr ,^ [* or" "- '"  "et Qrlr , ,s")e-(pls ') ,J-qr-A- i0Jo
Afr() ls,  s ' )  = e-() ls)6(s -  s ' )  exp(s 'c)+

* o [ t  + [*  or" , - ' "  "e{r(1t ls,  s")x
J-q P -  l  Jo
x [e-(pls ' )e1() ls ' )  -  r+(pls ' )e-( . \ ls ' ) ]

Introduce the functions

/ , i ( ) l r )  :  lo* 
d,r 'e- ' '  "Ql j ( ) ls ,  s ' )  .

27



Then we obtain from (8.37) that

fc
/ rz() l r )  :  e+() l t )  -  /  dpv(\ ,  df  n(r" l ' )  ,

J-q

/zz() l r )  -  e-() ls)  -  l t  d,p,v( \ ,p) fzz(rr l r )  .
J -q

were

\ ,  / , )  :  + i  [*  d,se-,"e+() ls)e-(pls)  -  e+(pls)e-( l l4
Jo \-  1t

So we come to our basic integral operator (8.3). In particular we have the following
equalities

/+() l r )  :  / t2( . \ ls)  ,
/ - ( l l r )  = f22(\ ls)  .

(  8.38)

Taking into account the definition (8.36) of the function O+()) we see that (8.38) coincides
with (8.34).

To prove (8.27) note that due to (S.35) the matrix coefficient $t(s,s') can be expressed
in the following way :

/r(r, r ')  :  r l2ni 
|_ro, lo* 

d"""-,""xt(rr lr,r")g(t lr, , ,s,)ds,,

Therefore for the corresponding matrix elements we have

fq

ldr( ' ,  " ' ) ] , ,  -  - i  I  dpf+0rl t)e_(pr, ls,)  :
J-q

fc
[ / t ( t , t ' ) ] t ,  -  + i  I  dpf+0'1")e1(pls ' )  :

J-q
fc

[d ' ( r ,s ' ) ] r r  -  - i  I  dpf  - (p l r ) r - (p ls ' )  =
J-s

f'I
[ { r (s,  s ' ) ]zz:  +i  I  dpf  - (p ls)e+(pls ' )  :

J-q

Note aiso that the symmetric property

B;t(s,s ' ) :  Bt i (s ' ,s)

is the direct corollary of the formula (8.32)
Now we finish the discussion of the Riemann-Hilbert problem which corresponds to

the case 0 < c ( oo. In another paper we will use this Riemann-Hilbert problem for the
calculation of the asymptotics of det(.[* V) as r -) oo (as it was done in [27) for the case
c: m),

- fB-1(s ' ,  s)

* i8. .1(s ' ,  s)

* iB--(s ' ,  s)

f  iBa-(s ' ,  s)

(8.3e)
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I I I .  Asymptotics of correlation functions
This part consists of two sections. In section 9 we study long distance asymptotics of

equal time temperature correlator of the impenetrable Bose gas. In section 10 we stud]'
density tlt+(a,t)rh(a,l) (current) correlations for the impenetrable Bose gas (it is equal to
a matrix determinant), we study also I corrections.

9. Temperature equal time correlator
Following section 1 and 5 we shall study asymptotics of equal time temperature cor-

relators (1.1),  (1.10)

t ,+/  t /T( rb*( ' ) rb(- ' ) l r  = *B++ det( /  -  . 'K)'+

Let us use our variables (1.2)

p:+;  r=rfr .  (e.z)
I

The associated Riemann problem approach leads to the following asymptotic formula
z--+@.o+oo,

\ ,p-(,),p(-z)lr: l-Tr*e-xc(p\..p { -; Ir* ar(atc(t))r} x
r -  -"  = . i?. ' ( ) t ) .  -  "2 ix) , t*"  L l  -  t  * '  

^o^r()o 
f  ) r ) ' -

*  { ( )3 + )?)sind + 2i)s)1 .o 'd} l  .

took poo from [4],[5] :

pa :  nrL/22-1/3 A-6

Glaisher constant. The function C(t) is given by

I f€ l " t t2- lc(ty=:l:dphl#+l
In (9.3) \s:  \ /P

>,, - 1ffi.; Im )r ) o ; Re )r ) o
The function o()) is given by

f*  du,  ̂  1" t"-9 +Ll
J-* , ' - tLnlml
29
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A is the

(e.1)

(e.3)

(e 4)

(  e.5)

o())  : ra A' \



The function d is given by

(e 7)
These formulae give us the long distance asymptotics of the equal time temperature cor-relator. The zero temperature case was considered in [S].

Another important correlator (at c = m) of the impenetrable Bose gas is p(e) (0.11),(1'15), (4'10), (4'13), the probabil i ty of absence of part icles in the interval [-r,r] .  I t  isgiven bv (1.1b)

P(z) : det(I _ -,/K)/ rr/n
here z and c are related by (1.2). The associated Riemann problem gives us

tnP(x) - -cco( o+) l!*
le-2"+z' f#-

Here

coe) : : [* d\tn (r+ ,r-^,)TJ_x \  /
At zero temperature, the asymptotics are different

(nP(a)=-ry- !uzo,

o(,, g) : 2\oc - ! + : /:#,n"|#:+l

(0,Co(t))2 dt+

Co(0)-  f  ,^- t , ,+ep
s"; i f  " 'J  +e

210
l

2x4

/q R' \

I  (e.e)
+" ' j  +" '

(  e.10)

( e.1 1)

(10.1)

r ln r ' \

10. Current correlators
Firt we study time correlators of currents j(r,t) = $+ (x,,t)rb(r,t) for the impenetrableBose gas at finite temperature as well as at zero temperature. Special attention is paidto the asymptotics, a^nd the I corrections are derived. we would like to emphasize thecontribution of N'M' Bogoliubov in this section. First let us consider the zero temperature

case. The deusity of the gas is given by

D=9
7l

Here g is the Fermi momentum. Let us introduce also two functions

P(t,  x) :  * lo ro^",,r^2-tr;- i . \c

H(t ,r) :  *  l*  "-n 'r^z-D+ix^d\- *  l l ra>,u,t(^2-h)+ie^ ( 10.3)
h: q2
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The -\'-current correlator is equal [36],[37] to the determinant of an :V x :V matrix :

("r( t . r ' . f .v) l ( rn-r , lN-r) ' . . . .  j ( rz, tz) j (xt , t r ) )  :d,gr lnf ,o;  c=oo (10.4)

where the matrix M;17 rs constructed as follows :

M;; :  D ;  Mr;=P(t ; - tp;x;-zp) k <i
M*;-  -T{( t r - t ; ,xk - t i )  k>i .

/10 5)

A similar formula is valid for finite temperature T > 0, where the distribution function of
particles in momentum space is given by the Fermi weight (0.6)

The density is equal to D : I dS,p(\) [see (0.7)]. The functions 27 and,7l7 are defined
nOW aS 

1.€
Py(t ,s)  :  I  asp1iu; t1r2-tr ; - i ' rc

J -*  '  
- " ) - '  '  (10' i )

1f€r€
t l r ( t , " )  :J I  " - ; r (x ' -D+i ,xd^- I  p())e- i t ( r : - t )+irrd),

l r  J -a J-oo '

(10.6)

(10.8)

In this notation formula (10.4) is still valid. Euclidean time correlators are also given by
similar formulae. Let us replace t 

- 
-ir in (10.a) and dema^nd that

1
V)r*+t-4)0.

It is possible to change the operator ordering in the l.h.s. of (10.4). Using fermionization
(1.14) and denoting by : : normal ordering with respect to fermions one obtains

(,  l ( t ,v, t ,v) '  .  . . '  j (ar , t r )  : )  = df t  TTtr ik t  c:  oo .

The matrix elements of na; a,re

rmik :  P(t ,  -  tp,  a i  -  ay) . (10.11)

It is interesting to look how I corrections change these formulae. Let us write down the I
correction for the equal time zero temperature n-point current correlator

(
( '  r ("r) .  . . .  .  j (a") : )  -  {  1*

t
. : P, l+ . ;Ee(ic -'^ (* - *) .

x d;t (ff i  * ar(i i^'t*-)) / ,=o'

r  a a l l; f rd,)1"

( 10.e)

(10.10)
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Here e(r) is the sign function, and

Let us consider also the If c cortection to the two point time dependent field correlator
(zero temperature):

i :z f t*3nl
\ " ' )  "  

t jk : r i - rk

1 lC oi \y i  -  o i \ ,2 j, ( i ,a) = fr J_oo^td)rl l i-

\ ,  j ( r , t ) j (0,0):)  = /  t  + 9\= D2 + (ff) nl 
o'^"u(ri-r3)x

x (cos)rz i )  
[ t .  *  f_,0^,(*  -  

*
i :x( t* , r3)  ;  ) i r :Ai-)r

(  10.13 )

(  10.14))l .' (;)
The intgration domain A is defined by A- {lArl> q,l)zl < q}.

Let us study the asymptotics in different directions in c, t plane. Simplest example is
the two-point correlator

\ ,  j ( r r , t ) j (at  t r ) ' )  :  D2 -P(tr t ,x21)P(tp,xn) . (  10.15)

An important role is played by the Fermi velocity u : 2q. In the space like directions
r2t + oo, tzr -p oo, lif I t u integration by parts gives the complete asymptotic expansion

P(t,c)=#:--m+ -#p?## (1016)
This is in agreement with conformal results [38-40]. In time-like directions the asymptotics
are different. One should represent P as follows :

p(t,x) = * l* uut^'-rr)-iAr6; - * U_:* l,*)rit1r2-r1-r 
\,d^ . (  10.17)

The first term here is a decaying wave packet (t --t21,x: x21):

(10 18)

Integration by parts of two other terms in (10.17) gives an expansion similar to (10.16).
So the difference between space and time asymptotics is in the wave packet. A similar
difference in space and time asymptotics in the XY model was found in [81. Combination



of (10.4).  (10.10) and (10.16),  (10.18) gives the complete asymptot ic expansion for the -V
cu.rent correlator.

Norv let us discuss the asymptotics of temperature correlators. In (10.7) we move the
inreorntlen contour down in the complex plane and obtain the asymptotic expansion

P(trr , tzr) :  ? Re i  +"-  
t rTtzr(r*2K)* icrrrx (10.19)

K=o 
zAK

)r :  @; Re)r>0; Im\s20; K:0,1, . . .  (10.20)

: This gives us the complete asymptotic expansion of N-current correlator (10.4), (10.10),
. For sma.ll temperature the series (10.19) is a geometric one. We can summarise

/T\p( tzt , tzr) :  (1)  ,=, f l "nt?t ,  ,  (10.21)
\u /  8n?\r21i .ut21)

where u :2q. This is also in agreement with conformal results [38-a0].
To conclude, let us emphasize once more that the problem of calculating correla-

tion functions for the quantum Nonlinear Schrcidinger equation is a rich interesting and
important problem [41].

We are grateful to L.D. Faddeev, A.S. Fokas, M.J. Ablowitz, T. Miwa, J.H.H. Perk,
B.M. McCoy and N.Yu. Reshetigkhin for discussions.
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