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Conformal dimensions in Bethe ansatz solvable models 
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Abstract. Models solvable by the hierarchy of Bethe ansatze (i.e. by the multicomponent 
Bethe ansatz) are considered. The spectrum of conformal dimensions which determines 
the long-distance asymptotics of correlations is calculated. This asymptotics in a general 
case is described by the direct sum of conformal theories, each possessing a central charge 
equal to one. 

Phase transition in quantum models with one space dimension takes place at zero 
temperature. If there is no gap in the energy spectrum then correlators at zero 
temperature decay as some power of the distance, this power being called the critical 
exponent. Conformal quantum field theory (see, for example, [l]) is very useful for 
a description of the critical behaviour. The spectrum of conformal dimensions in the 
conformal quantum field theory describes the spectrum of critical exponents. It was 
shown in [2-41 that conformal dimensions can be expressed in terms of finite-size 
corrections to the energy spectrum of a model. 

Much attention has been paid lately to completely integrable models. Great progress 
in their investigation and classification is due to the quantum inverse scattering method 
[ 51. Completely integrable models associated with the simplest (4 x 4)-dimensional 
rational or trigonometric R matrices describe one type of wave and can be solved by 
the ordinary (one-component) Bethe ansatz [5,6]. The non-relativistic Bose gas and 
the Heisenberg magnetic chain of spins $ are the examples of such models. Critical 
exponents for such models within the frame of the quantum inverse scattering method 
were calculated (see [7] and references therein). 

The finite-size correction approach to calculating the spectrum of conformal 
dimensions in such models was given in [8,9], permitting us also to obtain oscillating 
terms in the long-distance asymptotics. 

The central charge Virasoro algebra in these models is equal to one. So the critical 
exponents can depend on a continuous parameter. For integrable models the Bethe 
ansatz permits us to calculate this dependence explicitly, e.g. the dependence on the 
external magnetic field in the case of the Heisenberg magnet [7-91. 

The aim of this paper is to generalise the results mentioned above for the models 
solvable by the multicomponent Bethe ansatz which are connected with R matrices 
(solutions of the Yang-Baxter equation) of higher dimensions. The main result given 
below is the formula for conformal dimensions (and hence for critical exponents) in 
such models. This formula expresses critical exponents in terms of the values of the 

0305-4470/89/132615+06$02.50 @ 1989 IOP Publishing Ltd 2615 



2616 A G Izergin, V E Korepin and N Yu Reshetikhin 

‘dressed charge’ matrix ZmP. It is essential that the equation defining the matrix ZaS 
depends only on the R matrix of the model. The formula for critical exponents is, in 
this sense, universal. It should be mentioned that, in a particular case of some magnets 
with higher symmetries in zero magnetic fields, the spectrum of conformal dimensions 
has already been obtained [ 10-121. 

R matrices of the models solvable by the multicomponent Bethe ansatz can be 
classified with respect to representations of Lie algebras [ 13-19]. We will consider 
corresponding integrable models in ‘external magnetic fields’ h,, taking the Hamil- 
tonians in the form 

where Q, are conserved charges: [Q,, HO] =O.  Let us give some examples of such 
integrable systems. First of all, there are magnets with higher symmetries corresponding 
to algebras su( n ) ,  so( n) and sp(2n). The Hamiltonian Ho and charges Q, for them are 

where L is the number of sites of a one-dimensional space lattice. 
For the su(n) magnet one has [16,18] 

(3) 
i , j = l  

I (a = 1, .  . . , n -1; M =  n-1). q P ’  = e,, - eb+,,,+, 
For the so( n) magnet one has to distinguish between n = 2k + 1 and n = 2k. For the 
so(2k-t 1) magnet [19]: 

h,,/+,  = C (elef”-2/(2k-l)ej ,ej~.’)  

qju’= eh, - eh+,,,+, - eh.,,,+ 

2 k + l  

i , j = l  

qjk’ = 2(e:k - eL+2,k+2) 

hi,/+, = 2 (eveji f I + , -  l/(k-l)el.e:;,’) 

qj‘)  = eau - eu+l ,a+l  - 
q j k ’ =  I I 

For the sp(2n) magnet [ 191: 

hLI+, = 

q j p ) =  e a ,  - 

si”’ = enn - e!,+,,,+, 

&j = 1 

& .  = -1 

M = k .  

For the s o ( 2 k )  magnet [19]: 
2 k  

i , j = l  

I I 

ek-l,k-1 -e:+2,k+2+e:,k- ek+l,k+l 

2 n  

(eLelif’+ l / ( n  + 1)eiEjeLel;J) 
i , j= l  

I I I 

I 

- e,~,,~+ d-l,a~-l 
M = n  

( j =  1, .  . . , n)  
( j  = n + 1,. . . , 2n ) .  

( i ’  = 2k + 2 - i, j ’  = 2k + 2 - j )  

(a =1,. . . , k-1; a ’ = 2 k + 2 - a )  (4) 

(i‘= 2 k +  1 - i ; j ’ =  2k + 1 - j )  

(a = 1,. . . , k- 1; ( ~ ’ = 2 k +  1 -a) ( 5 )  
M = k. 

( i t =  2n + 1 - i ;  j ‘ =  2n + 1 - j )  

(a = 1,. . . , n - 1 ;  a ’ = 2 n + l - a )  (6) 
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Here efk are matrices (ejk),b = 8jo8kb acting in the Ith site of the lattice (local quantum 
operators). 

The model of a different kind which can be also solved by the multicomponent 
Bethe ansatz is the multicomponent non-linear Schrodinger equation. The Hamiltonian 
Ho in (1) and the charges Qu in the simplest case are (see, e.g., [19]) 

where L is the length of a box and CL, 4’ are canonical Bose fields ([$,(x), + i ( y ) ]  = 
~5,~8(x-y) ) .  The symmetry group of the R matrix for this model is SU(M+ 1). 

For the given model of this kind there are M (rank of the group) bare momenta 
p ? ’ ( A )  and M bare energies &(,O)(A) (cy  = 1,.  . . , M ;  A is a complex spectral parameter). 

The spectrum of the models solved by the multicomponent Bethe ansatz is defined 
from the system of Bethe equations [16, 19, 201: 

M N~ 
~ p h O ) ( ~ ; ) = 2 ~ n g -  C O , ~ ( A ; - A ~ )  (a=1, . . . ,  M ; j = l ,  . . . ,  Nu) .  (8) 

p=1  k = l  

Here L is the length of the box. Integer numbers Np ( p  = 1, .  . . , M )  are eigenvalues 
of conserved quantities and can be considered as numbers of interacting particles of 
different kinds or ‘spins’. Scattering phases Q m p  are defined only by the R matrix of 
the model and possess the antisymmetry property, i.e. 

@ , p ( A )  = - @ p m ( - A ) .  (9) 

Their explicit form is not essential in what follows and can be found, e.g., in [21]. 
The numbers n,? are integers if N, is odd and half-integers if N ,  is even. The momentum 
P of the state with given numbers n,? is equal to 

and the energy E is 

Considerations similar to those in the one-component case [22] show that for a 
given R matrix the functions p ? ’ ( h )  and &h0’(A) can be arbitrary (except that & ? ) ( A )  = 
E?’(  - A ) ;  p ? ” ( A )  = pio”( - A ) .  In other words, there exist completely integrable models 
with any given bare momenta pho)(A) and bare energies &:‘)(A). 

The explicit form of functions &b0)(A ) and pho’(A) for the models with Hamiltonians 
(1)-(7) can be found in [19]. 

In the thermodynamical limit ( L  + CO, densities of different kinds of particles 
D, = Nu/ L remain fixed) values A; in the ground state are distributed on the segment 
[ -qm, q,] with spectral distribution functions p, ( A )  satisfying 
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Here the kernels K are defined as 

The densities D, in the ground state are 

D, = I q u  p , ( A )  dA,. (14) 

The physical (dressed) energies &, (A)  of one-particle excitations over the ground state 
aie to be calculated from 

- 49 

= E : ~ ’ ( A ~ )  ( C Y  = 1,. . . , M )  (15)  

G ( * q a )  =o. (16) 

Defining Fermi velocities U, as derivatives of physical energies with respect to physical 
momenta at the boundary of the Fermi zone, one has M different Fermi velocities: 

U, = E&(h)/(27TF,(h))I*=q, .  ( 1 7 )  

Another important quantity is the ‘dressed charge’ matrix Z which is defined as the 
solution of the following equation: 

Let us now make the following important remark. In integrable models there exists 
an infinite number of conservation laws. Hence one can construct a family of commut- 
ing Hamiltonians with the same ground state but with different Fermi velocities U,. 
That is the reason why one can consider U, as independent variables. However, the 
matrix Z,,(A) will be the same for all these Hamiltonians. 

To calculate the central charge of the conformal algebra and the spectrum of 
conformal dimensions one calculates finite-size corrections. The results are as follows. 
The ground state energy E, is 

M 4,  M 

a = l  -4-  a = l  
E , = ( L / ~ T )  I ~ , ( A ) p ~ ” ’ ( h ) d h - ( ~ / 6 L )  c u,+o( l /L) .  (19) 

The energy and the momentum of the excited state, are 

M 2T 
, = I  L , = I  

S P = P - P , = ~ T  C l,D,+- ( I ~ - I ~ + d , l , ) .  ( 2 1 )  

Here d = { d , }  = { d ,  , . . . , d M }  and 1 = { 1,) = { I , ,  . . . , l M }  are M-dimensional vectors with 
integer components. Numbers I :  are also non-negative integers. The number d, gives 
the change of the ‘number of particles’, Nu,  in the excited state with respect to the 
ground state: d, = N, - D,L. The number I, is the total number of transitions of bare 



Conformal dimensions in Bethe ansatz solvable models 2619 

particles of the kind a from the vicinity of momentum ( - k F )  to the vicinity of 
momentum + k g  (each transition of this kind gives to I ,  a contribution equal to + 1 )  
and transitions of the kind + kg + ( - k g )  give a contribution equal to - 1 ) .  Non-negative 
integers Zz describe excitations with the momenta in the vicinity of * k ; ,  respectively. 
(Fermi momenta kg are defined as kg = TD,.) 

The matrix ,? in (20) is defined as follows: 

(-a= Z,,(qp) = Z,,(-q,) .  (22) 

Due to the arbitrariness of Fermi velocities U, it follows from equation (19)-(21) 
that one has the sum of M conformal algebras, each of them possessing the central 
charge equal to 1. It means that the effective infrared Hamiltonian and momentum 
are given as a direct um: 

M M 

H,ff= 0 %% Peff = 0 p a  
a = l  a = l  

Equations (20) and (21) permit us to calculate the spectrum of conformal dimensions 
A:. Let us consider the local operator O ( d ) ( ~ ,  t )  (x is a coordinate, O s x s  L, and t 
is the Euclidean time) which changes the number of particles of the kind a by d,. 
Such an operator can be introduced in the model with arbitrary functions P L O ) ,  E ? )  

(see, for example, [23]). From the general considerations of conformal field theory 
[ 1-4,8,9] the asymptotics of the correlator 

(Q(-d)(X, t ) B ' , d ) ( O ,  0)) (23) 
contains a sum of the terms of the form 

(24) ) * n = 1  

,M 

exp(-2nix m,D, n n (*ix+v,t)-2": 
a = l  

where m, are integers. In the box of finite length L it should be replaced by 

The contribution of the state (20) and (21) to the correlator (23) is proportional to 

exp{ - tSE - ixSP}. (26) 
Comparing (26) and (25) one has / , = m a ,  and using equations (20) and (21) one 
obtains the spectrum of conformal dimensions: 

2A:(d, 1, I * )  = 2 1 ~ + t ( ~ - ' d ) 2 , + ( ~ T 1 ) ~ * d , l n .  (27) 
Here the arbitrariness of Fermi velocities U, was again essentially used, as well as the 
fact that for a local operator quantities ( A i  -A;)  are integers independent of coupling 
constant. Equation (27) shows that the sector with fixed I and d corresponds to a 
conformal modulus [ 13.  

The leading term in the asymptotics for the correlator (23) can be now written 
down as 

Non-zero 1 and I' give the corrections to the asymptotics, non-zero 1 resulting in the 
appearance of oscillating terms [7,9]. I t  is to be noted that, for concrete models, in 
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general, there can also exist logarithmic corrections to the power terms (16) [24,25]. 
However, in a general case the first several terms in the asymptotics have no such 
corrections. 

From our point of view, one of the important results of this paper is that critical 
exponents are defined completely by the R matrix of the model and by the structure 
of the ground state. Hence, models possessing the same R matrix and the same ground 
state but different dispersion laws E ' O ) ( A )  and p " ' ( A )  are unified in the same universality 
class. This interesting fact is confirmed by independent calculations based on the 
quantum inverse scattering method [7]. 

We have considered the case of non-zero magnetic fields in a general position. 
Models of magnets corresponding to vector representation with zero magnetic fields 
for simply laced algebras were considered in [lo-121. It is not difficult to see that our 
results agree with the results obtained in those papers. Indeed, at h, + 0 (cy = 1, . . . , M )  
all the Fermi velocities U, become equal and M non-interacting conformal theories 
with central charges c = 1 are unified with the theory with c = M. The limiting spectrum 
of dimensions is obtained from equation (27) at h, -+ 0 (q, + CC) after summing up 
over cy from cy = 1 to a = M. It is interesting to note that the limit h, -+ 0 for the 
higher-spin magnets is not regular (the ground state for these magnets is filled with 
n-strings with n > 1). For example, taking the limit h += 0 in the integrable X X X  spin-s 
magnet one obtains the theory with c = 1. 

On the other hand, calculating the central charge from finite-size corrections at 
h = O  one obtains c = 2 s / ( s +  1 ) >  1 and the spectrum of dimensions of the Wess- 
Zumino model. It means that, at the limit h + 0, only a part of the conformal field 
theory describing the long-distance asymptotics of the correlators at h = 0 is restored. 
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