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The quantum inverse scattering method allows one to put quantum field theory models on
a lat t ice in a way which preserves the dynamical  structure.  The trace ident i t ies are discussed for
these models.

L. Introduction

Lattice versions (both classical and quantum) of completely integrable field
models are constructed in this paper. We consider the non-linear Schrcidinger
equation (the NS model) and the sine-Gordon model (the SG model) in the
formalism of the quantum inverse scattering method (QISM) [1]. The NS model
can be quantized directly in the continuous case [2] but the situation is different
for the SG model. The reason is that one has to solve the problem of ultraviolet
divergences for relativistic quantum models. Due to these divergences the classical
expression for the hamiltonian is not valid in the quantum case and the hamiltonian
requires a more precise definit ion. Normally such a definit ion is given by renormaliz-
ation by means of momentum cutoff . ' t of the perturbation series. The hamiltonian
is then defined by adding counter terms which diverge at -4 -+ m.

Perturbation series are asymptotic and make sense for small values of the coupling
constant. To define a theory at large coupling constant is a non-trivial problem.
General principles of quantum field theory impose the following restrictions on
this definit ion: (i) The hamiltonian should be positive with respect to physical
vacuum. It should be possible to treat the spectrum in terms of particles. (i i) The
S-matrix should be unitary and analytic. (i i i) The answers one obtains should
reproduce the perturbation series for small coupling constants. (iv) The theory
should possess the correct quasiclassical l imit. (v) The essential symmetries of the
classical theory should survive after quantization. The natural way to extend the
quantum theory to large coupling constants is to put it onto the lattice, the lattice
spacing :1 playing a role of an ultraviolet cutoff (4 -,,1-1).

Recently much attention has been given to the quantization of completely
integrable field models in two space-time dimensions. It is necessary to preserve
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complete integrabil ity in putting such a model onto the lattice because the natures
of integrable and non-integrable models differ essentially. The common approach
to quantization of completely integrable models is given by QISM [1]. The complete
integrabil ity in this method means the existence of an R-matrix which gives direct
information on the structure of the action-angle variables of the model. It is natural
to require that the structure of the action-angle variables should not be changed
by lattice regularization. So we demand that the R-matrices of the init ial model
and of its lattice version be the same. The important thing for solving the model
by QISM is to express the hamiltonian by means of "trace identit ies" in terms of
the transfer matrix of the model. If i t is done QISM allows one to calculate the
spectrum of the hamiltonian by applying the algebraic Bethe ansatz.

In sect. 2 the integrable lattice versions of the classical NS and SG models are
considered which possess the same classical r-matrices l2-4) as the corresponding
continuous models. We formulate the method for obtaining local conservation laws
by means of trace identit ies and define the corresponding classical hamiltonians
using this method. Though their dependence on local lattice variables is rather
complicated, these hamiltonians become the hamiltonians of the NS and SG models
in the continuous (/ - 0) l imit. One should not, however, quantize this hamiltonian
because the quantum model thus obtained is not integrable. To construct the
integrable quantum models one must at f irst restore the quantum R-matrix from
the classical r-matrix by means of the Yang-Baxter relations (see e.g. l4]). Then
the knowledge of the R-matrix permits one to define the hamiltonian of the lattice
quantum integrable model using quantum trace ident i t ies [5,6] .  This hamil tonian
is in general quasilocal, i.e. all sites of the lattice interact but the interaction strength
decreases exponentially with the distance between them. At the quasiclassical l imit
the hamiltonian turns into the local classical lattice hamiltonian. It appears that
this approach allows one to satisfy all the requirements for regularization of quantum
field theory models. In sect. 3 we construct the lattice quantum NS model and
discuss its connection with the generalized XXX model. We show that for the
lattice NS model the quantum hamiltonian can be made local. In sect. 4 the lattice
quantum sine-Gordon model is considered, the monodromy matrix being expressed
by elementary functions. The connection with the (spin Ll@Z*models is discussed.
In this paper we use essentially the notations of papers Ll,4,7).

2. Classical lattice models and trace identities

(a) The usual NS model is defined by the hamiltonian

H :  |  (a,4txa,4t  + x( t*( t+r l tg)  dx (1)
J

and by basic Poisson brackets { , t tGl ,  , l t * t t*)} :  16(.v - .y)  ( rve suppose -L< x < L).
Our aim now is to construct the lattice version of tbis model [6] preserving the
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integrability (the LNS model). Consider the one-dimensional lattice with N sites
and a lattice constant A (NA:2L). The elementary monodromy matrix Llnll) at
the rth site of the lattice (corresponding shift is equal to /) is defined as follows:

L(nl^)-1t- l i t 'd+L*xIx^, : 'J . i r , I ' "*  I  Q)
I i . /  xp^xn 1+; i iA+i*x lx" l

Here A is a complex spectral parameter;

p^ = ( !+i*x|x)t / t  ,  {x^,  yf l :  i6^,A ,

so that x,:,!(x)A in the limit r' -+ 0. Notice that L(nlA ) becomes the usual
infinitesimal monodromy matrix ll,2lof. the NS model, The r-matrix for Ltnltl
(2) is the same as in the continuous case:

r( t , r t ) :x(r \ -  l " \ - 'n,  (3)

{r(r?l i )@r(nlp)} : lL(nl i )@L(nlp ' ) , r ( t ,  p.)1.  @)

Here I1 is the transposit ion 4x4 matr ix,  i .e.  I I (A@B)i l  =B@A for any 2x2
matrices A, B. The matrix L@II) has the following important properties (oi are
usual Pauli matrices):

<ttL*(nl , t  *)o,  :  L(nl I) ,  (5)

det L(nlI)= d.(tr) = ja'1t - v)(t - vx), v = -2ila. (6)

The monodromy matrix I(,\) for the interval l-L, Ll is defined as usual:

r (^)  :  f (Nl^)  .  .  .  L(2 '^)L(11^),
and has similar properties:

otT*( t r*)at  :  ?"( ' \ ) ,  det  I ( ' \ )= aJ( ' t )  '
Our next step is to construct the local lattice hamiltonian which is integrable and

has the correct continuous limit (1). As is*kn-o-wn, the logarithmic derivatives of
the trace of the monodromy matrix I,({\ ) 

- 
I i  T(4[{r(l ), r(p)l:0 due to (4)] are

integrals of motion, the hamiltonian being a=rnong them. The local integrals of
motion can be obtained by taking logarithmic derivatives of r(,\) at points,\:2,
l :v*,  where detL(nl t )  (6)  vanishes. Let us prove this fact .  I t  fo l lows from
det L(nlu):  0,  det  L(nlux):  0 that  Lhl l , )  is  proport ional  to one-dimensional  pro-
jectors at these points, i.e. it can be represented in the following form:

Li t , \n lv) :  at fu)Frfu).  (8)

Here a (n ) and I fu) are two-component vectors. Using this representation one can
easi ly put z(z)  [as wel l  as r(v*)  : r*(z) ,  due to (5)]  into the factor ized form:

(7)

(1)

<x<L).
rving the n (7l . (n+1)a;(n)1,  p( l {+ 1)=B(1) (9)
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(summing over the repeated index l" is implied). So ln r(z) is local and corresponds
to the interaction of the two nearest neiehbours:

N

ln r(u): , ! , ,n (F4fu + 1)ar, , (n))  .

Let us now calculate the first logarithmic derivative of r(v):

,-t  1r1r'1r; :  ,- '(r) i .  ,uQ) ,
k=1

(10)
ru?): t r  {L(Nlv) .  .  .  L ' (k lu) ,  .  .  L(1.1u)}  .

Consider first the contribution of rz(u), denoting K =L(Nlu) . , '  L(4lu):

r  zQ) :  t r  {KL (31 v )  L ' ,  (21 u) L (11 v)}  :  \  g i  (1)  K i  p k QD @ |  Q) Li , "  Qlu) a  ̂  
(  t ) )  .

As z(z) can be put into the similar form

t(v) :  (9t0)Kipar(3))(Ft$lLm\2lv)a- (1 ))  '
one obtains

r '(u)r2Q) :'r?l,tr'-ir,,r)1,)','r,)lr','r,,,',1;:?l;li)i'i;',,),'l,,rur, .
Other rp(z) can be reduced to the form of rz@) by the cyclic permutation of l. 's
inside the trace in (10); one has finally

N

,- '(r)r '(r):  I  l tr  (L(k +rlu)L(klu)Lk -Llv)]-t tr (L(k + l lu)L'tklv)L(k -r l ,) .
k: l

(11)

So r-t1z)r'(z) is local and describes the interaction of three nearest neighbours on
the lattice. One can also check that higher logarithmic derivatives
d'( ln r(A)) /d i - l^=, . , .  are also local  descr ib ing the interact ion of  (m+2) nearest
neighbours (the explicit form of these derivatives is given in 16]).

Now define the hamiltonian of the classical LNS model as follows:

; /  . l  r3 f l  t r  -N ' l l

H:  r2K(a;-)  ' "  [ ( t . ; )  ' (^  )J ln-_.*  t  t '  t tz \

This hamiltonian is real and local lsee (5)]. It corresponds to the interaction of f ive
nearest neighbours. One can easily prove by direct calculation that as I + 0 it
becomes the cont inuous hamil tonian (1).  One may see the expl ic i t  form of  (12) in
the local lattice fields in [6].

(b) The SG model is defined by the hamiltonian
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and by poisson brackets {p(.r), u(y)}: d(x - y)(-r < x, y < L). The corresponding

lattice model (the LSG model) is constructed by means of the following elementary

monodromy matr ix L(nl i )  [8] :

L(nt^) : Gi,,;^y*:,:;':;,':ill;;;,i-iri\, (14)
xi - "*P I+triPu,I, "i 

= exP {+IiBP"\ ' (15)
efu) = ( l  + 25 cos Pu)t / t ,  5 = 1lmAl2 '

The Poisson brackets of local lattice fields p", un are \p^' un\: 5^n' The phase space

of the model is the direct product of N tori which become cylinders in the continuous

l imit  (u, ,  :n(x) ;  p, :p\ ; )0.The matr ix L(nlA\ sat isf ies relat ion (4) wi th the SG

classical r-matrix:

(10)

t ) ' .

r , , , (1))

/o o o o\
. ,  io cha - l  o l

r t t '1t ' ) : r* \o - l  cha of '
\o o o ol

t l  pt  =exp tr  ,  Y : iP'  '

(16)

,.t  ))  .

ation of I 's

L& -|lu'\.
(11)

ighbours on
derivatives

t 2) nearest

112)

:tion of five
ns J+0 i t
n of  (12) in

and has the following ProPerties:
ozL* (nlX* )o, = L(nl t ' ) '

det L(nlr  )  = a.( , t )  = 1 + ( ' \2 + i -2)s '

(1',7)

(18)

The local hamiltonian (three neighbours on the lattice interact) is constructed by

means of trace identit ies in terms of r( '\ ) = tr Z('\ ):

n  =\ 'a t  + ln [ r ( , \ ) ror(A)] l^ '=-a" '  .  (19)
6Y +,-  dA

Here ro(r\ ) is a trace of the monodromy matrix at pn : un = 0\ fi =

;i i ' ,  ;J_7sz)-,. Notice that d"(I2 : -b*t) = 0 rphich ensures the localitv of H'

The hamiltonian is also real which can be easily proved by using (17)' Its explicit

form in terms of Pn, ttn is given in ref' [8]' So we have described the classical

completely integrable lattice NS and sG models. Notice that these models can be

sotued by means of the inverse scattering method [9]. They have the same structure

of the action angle variables as the corresponding continuous models'

3. The quantum lattice NS model

The elementary monodromy matrix L(nli) in quantum case is defined by the

same formula (2)' Now 1n and y! ate,however' quantum operators with commuta-(13)
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tion relations \X,,, XXI: 6^nA. The star denotes the complex conjugation of c-
numbers and the hermitian conjugation of quantum operators. The main property
ot L(nli) is that it satisfies the relation

R\1,  p)L(n l i  )EL(n lp) :  L(nbr)OL(n lA )R (A, p) ,  (20)

with the R-matrix [6] of the continuous NS model:

R( i ,  r r )  :  I I  - ix( t -p)- tE.  (21)

E and II are identity and transposition 4 x 4 matrices. Eq. (20) results in
Ir(A), z(pr)]:0 and ensures the complete integrabil ity of the models whose hamil-
tonians are constructed by means of trace identit ies (notice that the trace r(A) of
the monodromy matrix ?"(i) in the matrix space is called "transfer matrix" in the
quantum case, r(,\) being, of course, a scalar quantum operator). The quantum
elementary monodromy matrix Llnll l  possesses properties which are similar to
the classical ones. Eq. (5) is not changed;the quantum analogue of eq. (6) is

L(nl l . )ozLr(nl , t  + ix)or:  do(I)  ,  (22)

do1t1:11'( t -v) \ i -v*+ix) ,  v=-2i lA.  (23)

This last property is an example of the generalization of the notion of the deter-
minant of monodromy matrix to the quantum case, see [6]. This generalization is
crucial for obtaining the needed trace identit ies with local or at least quasilocal
properties.

Consider now the trace identit ies in more detail. Taking eq. (22) at points A. : v i
) . :  u* - ix where dr(11:0,  one easi ly obtains the fo l lowing representat ions which
are generalizations of (8):

L i l ,@lu):  a i@)Br,@) ,  L;1,(nlv* -  i * )  :  d l .d1rfu) ,  (24)

Lir,fulv + ix): ir , fu)yi@) , Lir(nlv\: 6,,fu)i , fu) , ( i ,  k : 1,2) . (25)
Here a, 9, y, 6 are two-component vectors with operator (non-commuting) com-
ponents. We call the representation (24) "the direct projector representation",
similarly we call the representation (25) "the inverse projector representation".
These representations are essentially different in the quantum case due to the
non-commutativity of the vector components.

Now one has to define the hamiltonian of the LNS model by means of trace
identit ies. One can define .FI by means of the logarithmic derivatives of the transfer
matr ix r( , \ )  at  points A: y,  l :  ux by a direct  general izat ion of  the c lassical  t race
identit ies (12) 16l. The model thus constructed turns into the usual quantum NS
model in the l imit:1 +0. The hamiltonian of this lattice model is, however, only
quasilocal. The reason for this non-locality is that Ltnll,) can not be represented
simultaneously in the forms (24), (2-5) at some point A.
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Here we wil l nevertheless construct a quantum local hamiltonian which also
becomes (1) when /-+0. To do this let us modify the monodromy matrix, making
L(nll,) dif ierent at even and odd sites of the lattice:

(26)

p": JZ;+T*xIx^ , Zn : 1. + (-D"ixa .
I t  is convenient to rewri te the monodromy matr ix I( , t1=f(Nl l ) '  .  . f (1l i )  with
L defined by (26) in terms of the "doubled" elementary monodromy matrix /(n l,\ )
(n:1,  .  ,  j l r ) ,

L(nl^) :1-l it ' t  +,1" +lrcv|v, iJ xvf p" . | ,I iJ *p"y^ iil.a + z, +lxxfy"l '

/(n lA ) :  L(2nlt )L(2n - 1l^) ,
21, t .1= t(Nlz l l ) .  .  '  / (2 l l ) i  (1 l i ) .

The following properties of l(n l,r ) can be easily established:

R(1, p.) l (n l i  )A/(nlp) :  l (n lp)@ l(nl^)R( i ,  p) ,

oJ*fu:tr*)o':  l(nlt) '
l(nll,)ozlr (nlt + ix)oz = Do(,\ ) ,

Do(A) = ( j r t )ot . , t  -zr)( , t  -  u)( t  -  v i \ i  -  v) ,

ut :  I ' t i -  ix ,  v2= Pt+ ix 1= vf  1 ,

/(nl,.t ) has simultaneously both representations:

l*(nlr")  = 
" i  

( .n)Fi(n ' l  :  a i i " r t ,  ,n ' ,  ,  (ct  :  1,2) .

, - ' (u1r ' ( r1:  r - t ( r )Y rrrrr  ,

r1,Q) : t r  U( jNlz)  . ,  .  t ' , (k l t ) .  "  / (1 lz)1.

(27)

(28)

(2e)
with the same R-matrix (21) [it is also true for L(nll,), (26)]. Then instead of (17),
\22), Q3) we have

2i ix 2i ix 2i  ix 2i  3 ix:ul ,  ut=

Taking eq. (31) at  zeros of  Do(, \ ) ,  one obtains that  at  ) . :yr  (K: I , . . . ,4)  the
matr ix / (n l , \ )  can be represented as a direct  projector (24);  at  points l :urct ix
(K : 1, . . . , 4) it is an inverse projector (25). It follows then that at points

(30)
(3 1)
(32)

(? 1)

\34)
This is a crucial point for the locality of the logarithmic derivatives of the transfer

matrix at ,\ : vo. Let us explain the locality for the first logarithmic derivative at
the point  ) .  :  ut= u oI  r {A) = t r  ?"( i  ) :

l  ?5)
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Notice that matrices / can be cyclically transposed in the trace due to the commuta-
tivity of quantum operators at difterent sites ("ultralocality"). So it is enough to
compute the contribution r2@) which can be put into the form:

r 2( u) = t r  lK I  (3)  l '  (2)  /  (  1 )  I  :  K i  k l  k j  (3)  l ' i  ̂ \2)  I  ̂ ,  ( l  t ,

K:  t ( iN) '  .  .  r (4)  .
Making use of (34) one obtains

rz?) : (5r ( 1 )Krar (3))(P i \3) l ' i^ Q) y- ( 1 )) (37)
(6;(1) can be put to the left due to ultralocality), The transfer matrix itself can be
put into a similar form,

r(z)  :  (6;  (  1)K,rat  (3))(Fi  (3)  I  i^(2)y, , (1)) ,

and one has

r - 1 (u) r 2Q) : lp j (3) t i  ̂  e) y- ( 1 )l t 18, 131 l',  ̂ 121 y ̂  0)l
-- [ tr I  $l v ) I  (21 v ) I  ( l lv) l- '  tr I  Qlv ) t '  (21 r, ) t  (r l  u ),

and finally

, N/2
r-'(r)r'tv): u!, [r. l(k + Ilv)l(klv)t(k - tlr)) ' tr /(ft + Ilu)t'(klu)t(k - tlr) .

(  38)
So the first logarithmic derivative is indeed local. Expression (38) can be shown to
describe non-polynomial interactions of four nearest neighbours. The proof of the
locality for higher logarithmic derivatives is essentially the same as in the classical
case.

We have shown that ln r(A) at I - ro @ -- I,2) is a generating functional of local
conservation laws. The hamiltonian of the LNS model is defined as follows:

(36)

matnx t

where tl
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_"t'.

4*

I  i  r  d \ '  d I  _,  :L:*(AF) *** ai] rn [(r - lrul +'t i^a) * ' '

x 0 +Ixa ++iAA) * / ' r ( t r ) ) t^ : , .  + h.c. (39)

This hamiltonian is hermitian and local [due to eq. (30)]. It describes the interaction
of eight nearest neighbours on the lattice and becomes the hamiltonian (1) in th'e
continuous l imit. This i imit is easy to obtain from the results [5] on the trace
identit ies for the continuous NS model. due to the fact that as i + 0 the matrix
/(nl, i) is [up to O(/t)] a product of two usual infinitesimal operators f(r?li) t1l
at adjacent sites.

The local LNS model can be solved now by QISM in quite a standard way.
Applying the algebraic Bethe ansatz one finds the eigenvalues ,1 of the transfer



muta-
igh to

(36)

(37)

rn be

V.E. Korepin, A.G. Izergin I Lattice uersiotts of QFT models 409

matrix z(,\ ):

. ,1 = (1 -ixl -)it l1*/211+[xa -]ita)*' '  fr ^ ,  ̂ 0,*'"rl'r ,\ - ,\ r.

+{1 -1,<l  +tr i lsrN'2(t  +lr4+! i , i . t ) " ,  f r  ^  . -^*: t* .  (40}
t':-r ,\ - r\r'

where the "momenta" ,\1 satisfy the system of equations

I t l - IxA- l i l , i ) t1+I*t- ! i t , , t )1* ' '  -  f i  |  t r -Ar,- ix\  ia l rL@j =olJ, \ ru_^^*,*r .
k:r

The eigenvalues of the hamiltonian can be easily obtained from (39), (40) as:

E :L h$k) ,

I  i  /  d \ r  , . t  o r l ,n( , r : , r r ,_ i r ) l  +c.c. ,  42)ht t r t :1, ,  (A=J ***(a;- , ) ,  \  , \  _, \ t  /  r t=. ,
/r t ' \ ;  - - . -  

^z 
'

It follows from (42) that the spectrum of the hamiltonian is additive and can be
treated in terms of "particles".

So we have constructed the lattice quantum NS model. It must be emphasized
that our method of obtaining local trace identit ies based on considering the zeros
of the "quantum determinant" is different from the usual one for the models of
XYZ type where the dimension of the auxiliary matrix space is the same as that
of the local "quantum" (spin) space at the nth site of the lattice [10].

To conclude this section we construct the generalized XXX model starting from
the quantum matrix L\nlAl (2). It is not surprising that the LNS model is closely
connected with the generalized XXX model. It is already known [11] that the
classical NS model is gauge equivalent to the Heisenberg ferromagnet. We define
the elementary monodromy matrix of the generalized XXX model as follows;

L'(nl i ) : -2A- 'azL(nl , t ) :  i l ,+rct1" 'o, .  (43)

The matr ix L(nlL) here is def ined by (2):  the operators I l "  \ i :1,2,3;  n:
1,2,  ,  . .  ,  N) are

t\") : i* ' ' '  a-' lxlp^ * p"x,f ,
tN) :  *- t tz 

^- 'Lpnxn 
- x lp, l  ,  pn = ( .1+I*xIx,) ' / '  ,  (44)

t\'\ : -Zrc-t a-tLl +lrcx|x^1, lx,, x!J: 6^,a .

The matrix L'(nlt ) satisfies eq. (20) with the same R-matrix (2i) as f(nll) (2).
Notice that the transfer matrices of the seneralized XXX model and of the LNS

(38)
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model are similar as quantum operators if the number of sites N is even. Operators
t!") generate a representation of the SU(2) algebra in the Fock space:

Wr
matri
(19) r

I

One
is no,
sites
distar
a rep
an tn
wher
non- l
and t
turns
phast
L(nl ;

Th
to thr
(eq.(

The t
Beth

I t  car

l{: ' , tt[ ' ]: ie,r,,t ' ,") '

This representation is infinite dimensional and in general irreducible,
of the total "spin" being equal to

(4s)

the square

(46)

'rgr

12:S(S+1), S = -2lxA .

One can see from this formula that  when S=i,  1, ; , . . .  the inf in i te-dimensional
representation becomes reducible and the (2S+1)-dimensional irreducible rep-
resentation separates. Generators tl") acting in this representation may be then
real ized as (2S+1)x(25+1) matr ices and the monodromy matr ix l ' ( / r l l )wi th
these t! ') corresponds to the completely integrable lattice model. The local quantum
space of  th is model at  the nth s i te is a spin space (S:1,  1, . . . ) .  This real izat ion of
the SU(2) algebra in Fock space was first constructed in 112].

4. The lattice quantum SG model

The construction of the quantum integrable LSG model is necessary for the
quantization of the SG model as discussed in the introduction. The quantum
R-matrix of the SG-model is well-known l1l:

It can be derived from the classical r-matrix (16). The elementary monodromy
matrix L(nll) which satisfies eq. (20) with the R-matrix (47) is given by the same
formulae (14), (15) as in the classical case, the variables pn and un being now,
however, quantum operators with canonical commutation relations:

Lu^, p*l:  i5^,. (48)

Notice that the ordering of operators rr, x in (14) is now essential. The property
(17) also holds in the quantum case. The quantum analogue of (18) is the following
relat ion:

L(nl l , )ozLr(nl i  e- i ' )o2:  dq(I)  ,
(49\

dq(A):1+s(, i2e'"+, \  te ' "1,  5:1funA')2.

When z1 
- 0 the monodromy matrix L(nlI) turns into the infinitesimal matrix l, (,\ )

which was used in the pioneering paper [13].

/sh(a+ly)  0 0 0 
\I  o is iny shc 
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We define the hamiltonian of the quantum LSG model in terms of the transfer
matrix r(,\) by making the natural generalization of the corresponding definit ion
(19) of the classical LSG model:

H: m'A , /_a "  a .  \
l6sin v ;  \a; l lF( i ' :  K- l  **o G(A' :  v ' \ ) '  (50)

F(121=tnld;N/2 ( I)  7(I) l  ,  G(t  2y =lnldr*/2 ( i  - lh( i ) l  ,

uu:  -b ' t  exp ( iy)  , K+= vL f  : Ip '  ,  b =25( l+J149)- '  ,
dr(v*) :o '

One can easily prove using (17) that H is hermitian (H: HE). This hamiltonian
is not, however, local as in the case of the classical model. It is quasilocal: all the
sites on the lattice interact but the strength decreases as (lsin r1tt-nt with the
distance. Let us explain this statement. It is easily seen from (49) that L(nlr*)hut
a representation in the form of a direct projector (24) and L(nlx,) in the form of
an inverse projector (25). As the point /11 K1 ?t€ all different there exists no point
where both representations are valid simultaneously. This is the reason for F1 being
non-local. In the quasiclassical l imit the difference between the direct projector
and the inverse projector vanishes and locality is restored. The hamiltonian (50)
turns into the classical hamiltonian (19) in this l imit. The fact that the classical
phase space is a direct product of tori leads to the commutativity of quantum matrix
L(nll,), ( i ), r(i ) and FI with the local operators exp {4dp^l F} and exp {8du"l p}.

The quantum LSG model can be solved by means of QISM. The solution reduces
to that given in [7,8] if one changes the local pseudovacuum at two adjacent sites
(eq. (12) in [7]). The new pseudovacuum is equal to

/  ,  2zt l  /  u)-+v), , - ,  \ l ' t / '
e , , :6(Ltzn_r2n,_ip*;)Ll_2scos(p-T)J (sr)

The eigenstates @- of the hamiltonian (50) can be found by applying the algebraic
Bethe ansatz. The eisenvalues of H are real and additive:

H@^:(, f . ,nos)o^,  f f i  :0,r ,2, . . . ,

htr l : imrJsiny s U-2A*'b cos y-1"4bt11.*2 cos 2y) l t* '

'4- -b d)nt= b e- ' '  )

The values of ,\6 in (52) is not arbitrary but must satisfy the system of equations

l1:9, ]""= f r  r^1", , ' '  - t i : , r )  ,  t :1.2. . . . ,m. (s3)Laor,r l ' tJ  -  
l ' j l  \^ i  . ' ' - i l  , - ' "1 '

It can be shown that all the ,\t are different [14].
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To conclude let us discuss the connection of the above model with the (spin l) @ Z.
models. Notice that commutation relations

qlxi,  :  e' 'xlnl (54)

at ylZr:QlP (the integers O and P are supposed to be relatively prime, and
Q < P) admit the following constraint:

(x*) '  :  \n*)"  :1 .  (55)

In this way the field variables becomes discrete ones. It is possible to change the
D-function in (51) into the discrete 6-symbol. The pseudovacuum thus became
normalizable. At y:2rQlP, 1 and 7r can be realised by the following PxP
matrices:

LJ I rl

[4] A
[5]  A
[6] A
[7]  A
[8] A
Isl r,,

[10] L
[11] v
[12] T.
[13]  L.
[14]  A
l ls l  N
[16] v
[17] J.

A. l
+i 12i l  - tXob:dat "*pIP 

ta-] l l , r la:6o*o.r ,

a+P:a.
(s6)

e,b=t, . . . ,P,

In this way the LSG model becomes (spin l)@Zp model.

5. Conclusion

We have constructed lattice versions of the NS and SG models preserving the
complete integrabil ity and other symmetries of the models (with the natural excep-
tion of Lorentz invariance). From the quantum field theoretical point of view the
LSG model is of special interest when / -+ 0 and after mass renormalization. It
serves as a definit ion of the continuous relativistic quantum SG model. The analysis
of the solution of the model [15] shows that Lorentz invariance is restored in the
continuum limit. At y =|tr the naive physical vacuum becomes unstable. One has
to fi l l  the pseudovacuum also with bound states to obtain the real physical vacuum
as was described in the paper [16]. Notice that the existence of a crit ical phenomenon
at y =!tr was predicted in [17].

Our regularization of the SG model seems to be the most natural one. In contrast
to other lattice regularizations preserving integrabil ity it is done in terms of boson
fields. So we have shown in detail how the programme of lattice regularization of
the quantum field theory, which was described in the introduction can be fulf i l led.

It is a pleasure to thank L.D. Faddeev for valuable discussions, B. Pearson for
help and the Service de Physique Theorique de Saclay for its hospitality.
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