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Abstract. Some open problems in Exactly Solvable Models are presented.

1. Introduction

In the recent years there has been considerable progress in investigating rig-
orously the correlation functions of physical models solvable by Bethe Ansatz.
These investigations based on various methods (Algebraic Bethe Ansatz, quantum
Knizhnik-Zamolodchikov equation, quantum groups, etc.) allowed for the very first
time to obtain information about the short and large distance asymptotic behavior
of correlation functions of models not equivalent to free fermions. Of course there is
still a lot of work to be done and a lot of unsolved problems. Also with the advent of
quantum computation and quantum information new objects of interest appeared
like the entanglement entropy. The entanglement entropy is a special correlation
function and it can be computed exactly in some cases. In this paper we are going
to present four unsolved problems which we believe that are of considerable interest.
Of course they do not exhaust the list of open problems in exactly solvable models.
Also the list of references is by no means complete and should be considered only
as a starting point for a complete tour of the literature on the subject. This article
is an updated version of [1].

2. Norm of the eigenfunctions of the Hubbard model

An important step in computing the correlation functions of models solvable
by Bethe Ansatz is the calculation of the norm of Bethe ansatz wavefunctions.
The first conjecture expressing the norm of the Bethe wavefunction in terms of a
determinant was put forth by M.Gaudin in [3] in the case of what is called now the
Gaudin model. The conjecture was extended later [4] in the case of the XXX and
XXZ spin chains and Bose gas with δ-function interaction.

The first proof of Gaudin’s conjecture was given in [5] using the formalism of
Algebraic Bethe Ansatz. In the subsequent years the results of [5] were generalized
in the case of systems solvable with Nested Bethe Ansatz [6, 7].

The first open problem that we present is the conjecture proposed in [2] for the
norm of the eigenfunctions of the one dimensional Hubbard model. Let us be more
specific. The Hamiltonian of the one-dimensional Hubbard model on a periodic
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L-site chain may be written as

(2.1) H = −
L

∑

j=1

∑

a=↑,↓

(c+j,acj+1,a + c+j+1,acj,a) + U

L
∑

j=1

(nj↑ − 1
2 )(nj↓ − 1

2 ) .

Here c+j,a and cj,a are creation and annihilation operators of electrons of spin a

at site j , nj,a = c+j,acj,a is the corresponding particle number operator, and U
is the coupling constant. Periodicity is ensured by the condition cL+1,a = c1,a.
The coordinates and the spin of the electrons are denoted by xj = 1, · · · , L and
aj =↑, ↓. The Hubbard Hamiltonian conserves the number of electrons N and the
number of down spins M , therefore he eigenstates of the Hamiltonian (2.1) may be
represented as

|N,M〉 =
1√
N !

L
∑

x1,...,xN=1

∑

a1,...,aN=↑,↓

ψ(x1, . . . , xN ; a1, . . . , aN) c+xN aN
. . . c+x1a1

|0〉

where ψ(x1, . . . , xN ; a1, . . . , aN ) is the Bethe ansatz wave function which depends
on two sets of quantum numbers, {kj | j = 1, . . . , N} and {λl | l = 1, . . . ,M}, which
can be complex. The quantum numbers kj and λj are called charge and spin
rapidities and satisfy the Lieb-Wu equations

eikjL =

M
∏

l=1

λl − sin kj − iU/4

λl − sin kj + iU/4
, j = 1, . . . , N ,

N
∏

j=1

λl − sin kj − iU/4

λl − sin kj + iU/4
=

M
∏

m=1,m 6=l

λl − λm − iU/2

λl − λm + iU/2
, l = 1, . . . ,M .

In logarithmic form the Lieb-Wu equations take the form

kjL− i

M
∑

l=1

ln

(

iU + 4(λl − sin kj)

iU − 4(λl − sin kj)

)

= 2πnc
j ,

i

N
∑

j=1

ln

(

iU + 4(λl − sin kj)

iU − 4(λl − sin kj)

)

− i

M
∑

m=1

ln

(

iU + 2(λl − λm)

iU − 2(λl − λm)

)

= 2πns
l .

In the previous equations nc
j is integer, if M is even and half odd integer, if M is

odd. Similarly, ns
l in is integer, if N −M is odd, and half odd integer, if N −M is

even.
It was shown in [2] that the Lieb-Wu equations can be obtained as extremum

conditions for the action

S =

N
∑

j=1

(kj sin kj + cos kj)L +

N
∑

j=1

M
∑

l=1

ΘU (λl − sin kj) −
1

2

M
∑

l,m=1

Θ2U (λl − λm)

−2π

N
∑

j=1

nc
j sin kj − 2π

M
∑

l=1

ns
lλl .

where ΘU (x) = i
∫ x

0 dy ln
(

iU+4y
iU−4y

)

.

Now we can state the conjecture:
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Conjecture 2.1. [2] The square of the norm of the Hubbard wave function ψ
is given by

‖ψ‖2 = (−1)M ′

N !

(

U

2

)M N
∏

j=1

cos kj

∏

1≤j<k≤M

(

1 +
U2

4(λj − λk)2

)

det









∂2S
∂s2

∂2S
∂s∂λ

∂2S
∂λ∂s

∂2S
∂λ2









.

where s = sin kj and M ′ is the number of complex conjugated kj’s in a given
solution of Lieb-Wu equation. The matrix appearing in the previous expression has
dimension (N +M) × (N +M) and has four blocks with matrix elements

(

∂2S
∂s2

)

mn

=
∂2S

∂sm∂sn
= δm,n

{

L

cos kn
+

M
∑

l=1

U/2

(U/4)2 + (λl − sn)2

}

, m, n = 1, . . . , N ,

(

∂2S
∂λ∂s

)

mn

=

(

∂2S
∂s∂λ

)

nm

=
∂2S

∂λm∂sn
= − U/2

(U/4)2 + (λm − sn)2
,m = 1, . . . ,M, n = 1, . . . , N,

(

∂2S
∂λ2

)

mn

=
∂2S

∂λm∂λn
= δm,n







N
∑

j=1

U/2

(U/4)2 + (λn − sj)2
−

M
∑

l=1

U

(U/2)2 + (λn − λl)2







+
U

(U/2)2 + (λm − λn)2
, m, n = 1, . . . ,M.

The conjecture was checked for small values of M and N , M = 0 and arbitrary
N , and in the limit of U → ∞ with M,N arbitrary. However at the moment we
do not know of a general proof.

Open problem: Prove the previous conjecture expressing the norm
of the eigenfunctions of the Hubbard model.

3. The Heisenberg Spin Chain and Number Theory

Consider the antiferromagnetic spin 1/2 Heisenberg XXX spin chain with the
hamiltonian

(3.1) HXXX =

∞
∑

j=−∞

(

σx
j σ

x
j+1 + σy

j σ
y
j+1 + σz

j σ
z
j+1

)

,

where σx
i , σ

y
i , σ

z
i are the Pauli matrices and we will denote σ0 the 2× 2 unit matrix

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σ0 =

(

1 0
0 1

)

.

Bethe succeeded in diagonalizing this Hamiltonian [8] by means of what we
call today the coordinate Bethe Ansatz, and the unique antiferromagnetic ground
state in the thermodynamic limit was investigated by Hulthen [9]. The correct
description of the excitations in terms of magnons of spin 1/2 was first obtained by
Takhtajan and Faddeev in [10].

We are interested in the following correlation functions: the longitudinal spin-
spin correlation function 〈Sz

i S
z
i+n〉 and the emptiness formation probability P (n) =

〈GS|∏n
j=1 Pj |GS〉 where Sz

j = σz
j /2 and Pj = Sz

j +1/2. P (n) gives the probability
of having a ferromagnetic string of length n in the antiferromagnetic ground state.
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In 2001 H.Boos and one of the authors computed exactly the emptiness for-
mation probability P (n) for small strings (n = 1, . . . , 4). The starting point was
the multiple integral representation derived in [14] based on the vertex operator
approach [59]. In [15] it was shown that the integrand in the multiple integral rep-
resentation for the emptiness formation probability can be reduced to a canonical
form which then can be integrated with the results:

P (1) =
1

2
= 0.5 ,

P (2) =
1

3
− 1

3
ln 2 ,

P (3) =
1

4
− ln 2 +

3

8
ζ(3) = 0.007624158 ,

P (4) =
1

5
− 2 ln 2 +

173

60
ζ(3) − 11

6
ln 2 · ζ(3) − 51

80
ζ2(3)

−55

24
ζ(5) +

85

24
ln 2 · ζ(5) = 0.000206270 .

In the previous expressions ζ is the Riemann zeta function defined as [11]

ζ(s) =

∞
∑

n=1

1

ns
ℜ(s) > 1 .

Alternatively the Riemann zeta function can be expressed in terms of the alternating
zeta series ζa

ζ(s) =
1

1 − 21−s
ζa(s) , s 6= 1 ,

where

ζa(s) =
∑

n>0

(−1)n−1

ns
= −Lis(−1) .

with Lis(x) the polylogarithm. In some cases it is preferable to work with the
alternating zeta function due to the fact that unlike the Riemann zeta function
who has a pole at s = 1, ζa(1) = ln 2 .

The result for P (1) is obvious from symmetry and P (2) can be obtained from
the ground state energy computed by Hulthen [9]. P (3) can be obtained from
Takahashi’s result [12] for the nearest neighbor correlation (see also [13]). The
formulae for P (5) and P (6) obtained in [16] and in [17] showed a similar structure.

The techniques developed in [15] and [17] were also used in the computations
of the spin-spin correlation functions with the results:
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〈

Sz
j S

z
j+1

〉

=
1

12
− 1

3
ζa(1) = −0.147715726853315 ,

〈

Sz
j S

z
j+2

〉

=
1

12
− 4

3
ζa(1) + ζa(3) = 0.060679769956435 ,

〈

Sz
j S

z
j+3

〉

=
1

12
− 3ζa(1) +

74

9
ζa(3) − 56

9
ζa(1)ζa(3) − 8

3
ζa(3)2

−50

9
ζa(5) +

80

9
ζa(1)ζa(5) = −0.050248627257235 ,

〈

Sz
j S

z
j+4

〉

=
1

12
− 16

3
ζa(1) +

290

9
ζa(3) − 72ζa(1)ζa(3) − 1172

9
ζa(3)2 − 700

9
ζa(5)

+
4640

9
ζa(1)ζa(5) − 220

9
ζa(3)ζa(5) − 400

3
ζa(5)2

+
455

9
ζa(7) − 3920

9
ζa(1)ζa(7) + 280ζa(3)ζa(7)

= 0.034652776982728 .

Again the nearest neighbor correlator was obtained from Hulthen result [9] and
the second-neighbor correlator was obtained by Takahashi in 1977 [12] using the
strong coupling expansion of the ground state energy of the half-filled Hubbard
chain. The next nearest correlators and other type of correlation functions up to
8 lattice sites were succesively calculated in [18],[19],[20],[21],[22]. In 2001 the
following conjecture was put forward in the light of the previous results

Conjecture 3.1. ([15],[17]) Any correlation function of the XXX spin chain
can be represented as a polynomial in ln 2 and values of Riemann zeta function at
odd arguments with rational coefficients .

Even though the conjecture was finally proved in 2006 by H. Boos, M. Jimbo, T.
Miwa, F. Smirnov and Y. Takeyama [23] we still not have explicit expressions for all
the rational coefficients that enter in the expressions for the correlation functions.
Recently Jun Sato [24] obtained a formula for the linear terms and some of the
higher terms. In order to present the results let us introduce c1, c2, · · · by

c1 =
ζa(1) − ζa(3)

3
,

c2 =
ζa(3) − ζa(5)

3
,

c3 =
ζa(5) − ζa(7)

3
, · · ·

and define c0 = (1/4 − ζa(1))/3. Then Sato’s formula reads

〈SjSj+n〉 =

n
∑

k=0

(−1)k

(

n− 1
k

) (

2k + 1
k

)

ck−24

(

n− 1
2

)

c1(c0+c1)+ higher terms .

The formula reproduces the results up to 〈SjSj+7〉. Now we can state our second
open problem:

Open problem: Obtain an efficient description of the rational coef-
ficients which appear in the expression for the correlation functions of
the XXX spin chain as a polynomial in alternating zeta series at odd
arguments.
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4. Asymptotic Behaviour of Time and Temperature Dependent
Correlation Functions

Computing the large time and distance asymptotics of correlation functions is
one of the most difficult tasks in the field of Exactly Solvable Models. In the last
twenty years intense studies on models equivalent with free fermions showed that
the following strategy is applicable. The first step is obtaining a representation
of the correlation functions in terms of a Fredholm determinant either by direct
summation of form factors or other methods. This determinant representation
is fundamental in obtaining a integrable system of partial differential equations
which completely characterizes the correlators. The last step is the large time
and distance analysis of the matrix Riemann-Hilbert problem associated with the
integrable system from which the asymptotics of the correlation functions can be
extracted. Let us present the results in the case of the the isotropic XY model
[25] (called alternatively the XX0 spin chain) in transverse magnetic field with the
hamiltonian

HXX0 = −
∞
∑

j=−∞

(

σx
j σ

x
j+1 + σy

j σ
y
j+1 + hσz

j

)

where σ are the Pauli matrices and h is the magnetic field. We are interested in
the asymptotic behavior of the time and temperature correlation function

(4.1) 〈σ+
1 (t)σ−

n+1(0)〉T ≡ g(n, t) =
Tr

{(

e−HXX0/T
)

σ+
1 (t)σ−

n+1(0)
}

Tr
(

e−HXX0/T
)

when n and t are large and h ∈ [0, 2). Making use of the above mentioned strategy
the authors of [28] showed that g(n, t) decays exponentially but the rate of decay
depends on the direction φ defined as cotφ = n/4t when n, t→ ∞. The asymptotics
in the space-like and time-like regions are:

• Space-like directions 0 ≤ φ < π/4

g(n, t) → C exp

{

n

2π

∫ π

−π

dp ln

∣

∣

∣

∣

tanh

[

h− 2 cosp

T

]∣

∣

∣

∣

}

• Time-like directions π/4 < φ ≤ π/2

g(n, t) → Ct(2ν2
++2ν2

−
) exp

{

1

2π

∫ π

−π

dp |n− 4t sin p| ln

∣

∣

∣

∣

tanh

[

h− 2 cosp

T

]∣

∣

∣

∣

}

with

ν+ =
1

2π

∣

∣

∣

∣

tanh

(

h− 2 cosp0

T

)∣

∣

∣

∣

ν− =
1

2π

∣

∣

∣

∣

tanh

(

h+ 2 cos p0

T

)∣

∣

∣

∣

n

4t
= sin p0

We should note that at zero temperature the asymptotics of the correlation
functions were evaluated in [26] and [27] and for φ = π/2 the leading factor was
computed in [30]. Similar results, making use of the same strategy, were obtained in
the case of one dimensional impenetrable bosons [60] and the impenetrable electron
gas [31, 32, 33, 34].

Unfortunately the method outlined fails in the case of models who are not
equivalent with free fermions. In this case it is not possible to obtain a representa-
tion of the correlation functions in terms of Fredholm determinants. An alternative
way which seems promising is the study of multiple integral representations for cor-
relators. Very recently Kitanine, Kozlowski, Maillet, Slavnov and Terras proposed
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in [35] a general method to obtain the large distance asymptotics from the first
principles using the Algebraic Bethe Ansatz. Their method is applicable to a large
class of integrable models but in order to be more precise we are going to focus on
the XXZ spin chain. We remind the hamiltonian

HXXZ = −
∞
∑

j=−∞

(

σx
j σ

x
j+1 + σy

j σ
y
j+1 + ∆σz

i σ
z
j+1 + hσz

j

)

where ∆ is the anisotropy and h the magnetic field.
The starting point of the analysis performed in [35] is the master equation for

the generating functional of the longitudinal spin-spin correlation function 〈σz
1σ

z
n+1〉

in finite volume obtained in [41]. In general taking the thermodynamic limit directly
in the master equation is a very difficult task, however Kitanine et al., were able
to obtain a new expansion of the master equation in terms of multiple integrals
of a special type called cycle integrals. The large distance asymptotic behavior
of the cycle integrals can be obtained from the Riemann-Hilbert analysis of the
Fredholm determinant of an integral operator with a generalized sine-kernel [36].
Then the multiple series corresponding for the generating function can be summed
asymptotically by computing each term using the asymptotic behavior of the cycle
integrals. Using this technique the large distance asymptotics of the longitudinal
spin-spin correlation functions at zero temperature were computed.

We see that the principal ingredients are the multiple integral representation
and the master equation. In the static case at zero temperature and zero magnetic
field they were obtained by Jimbo, Miki, Miwa and Nakayashiki in [37, 38] and in
[39, 40] at non-zero magnetic field. The generalization at finite temperature was
obtained by Göhmann, Klümper, Seel and Hasenclever in [44, 45] and the multiple
integral representation for the dynamical correlation functions at zero temperature
were obtained in [42]. However in the case of time and temperature correlation
functions we still do not have such formulae or know rigorously the asymptotic
behavior. This brings us at our third open problem:

Compute rigorously the large time and distance asymptotic behavior
of the spin spin correlation functions of the XXZ spin chain at finite
temperature in the critical region (−1 ≤ ∆ < 1).

5. Entropy of Subsystems

In the recent years a large amount of effort was spent in investigating entangle-
ment in a multitude of quantum systems. Besides being the fundamental resource
in quantum computation and quantum information it is believed that a better un-
derstanding of entanglement will provide further insight in the theory of quantum
phase transitions and in the study of strongly correlated quantum systems.

We are interested in one dimensional systems of interacting spins which posses
a unique ground state |GS〉. The ground state can be considered as a bipartite
system composed of a contiguous block of spins denoted by A and the rest of the
spins denoted by B. The density matrix of the entire system is given by

ρA&B = |GS〉〈GS| ,
and the density matrix of the subsystem A is obtained by tracing the B degrees of
freedom

ρA = TrB(ρA&B) .
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In [46] Bennet, Bernstein, Popescu and Schumacher discovered that the von Neu-
mann entropy of the subsystem A

(5.1) S(ρA) = −Tr(ρA ln ρA) .

provides an efficient way of measuring entanglement. Another important measure
of entanglement is the Renyi entropy defined as

SR(ρA, α) =
1

1 − α
ln Tr(ρα

A) .

If we consider the doubling scaling limit in which the size of the block of spins
is much larger than one but much smaller than the length of the entire chain the
results of numerous investigations using different techniques (conformal field theory,
exact results, numerics, etc.) can be summarized as follows.

The entropy of subsystems of critical one dimensional models scales logarithmi-
cally with the size of the block of spins. If c is the central charge of the associated
conformal field theory that describes the critical model for a block of n spins we
have

(5.2) S(n) =
c

3
lnn , n→ ∞ .

This formula was first derived for the geometrical entropy (the analog of (5.1) for
conformal field theory) by Holzhey, Larsen and Wilczek in [47] (see also [48],[49],[54]).

In the case of non-critical models the entropy of subsystems will increase with
the size of the subsytem until it will reach a limiting value S(∞). This was first
conjectured in [48] (based on numerical evidence) and proved analytically for the
XY and AKLT spin chains in [56],[57] and [51]. In the case of the AKLT spin
chain [50] S(∞) = 2.

It is instructive to present the results obtained for the the XY spin chain in
magnetic field with the hamiltonian

HXY = −
∞
∑

j=−∞

(

(1 + γ)σx
j σ

x
j+1 + (1 − γ)σy

j σ
y
j+1 + hσz

j

)

,

where 0 < γ < 1 is the anisotropy parameter an h is the magnetic field. The model
was solved in [25] and [52]. The ground state is unique and in general there is a
gap in the spectrum.

The limiting value of the entropy in the double scaling limit depends on the
isotropy and magnetic field. The density matrix of a block of n neighboring spins
in the ground state will be denoted by ρ(n). We can distinguish three cases:

• Case Ia: moderate magnetic field 2
√

1 − γ2 < h < 2
• Case Ib: weak magnetic field including zero magnetic field 0 ≤ h <

2
√

1 − γ2

• Case II: strong magnetic field h > 2

The results for all the regions obtained in [56] can be presented compactly as

S(∞) =
π

2

∫ ∞

0

ln

(

θ3(ix+ στ
2 )θ3(ix− στ

2 )

θ23(
στ
2 )

)

dx

sinh2(πx)
.

The modulus k of the theta function θ3 is different in the three regions; τ =
I(k′)/I(k) where I(k) is the complete elliptic integral of modulus k, k′ =

√
1 − k2
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is the complementary modulus and σ = 1 in Case I and σ = 0 in Case II. Indepen-
dently, I. Peschel using the approach of [54] calculated and simplified the results in
region (Ia) and (II) obtaining

S(∞) =
1

6

[

ln

(

k2

16k′

)

+

(

1 − k2

2

)

4I(k)I(k′)

π

]

+ln 2 with k =

√

(h/2)2 + γ2 − 1

γ
, (Ia)

S(∞) =
1

12

[

ln
16

k2k′2
+ (k2 − k′2)

4I(k)I(k′)

π

]

with k =
γ

√

(h/2)2 + γ2 − 1
. (II)

The simplified result for the region (Ib) was obtained in [56]

S(∞) =
1

6

[

ln

(

k2

16k′

)

+

(

1 − k2

2

)

4I(k)I(k′)

π

]

+ln 2 with k =

√

1 − γ2 − (h/2)2
√

1 − (h/2)2
. (Ib)

The isotropic case γ = 0 was treated in [53]. If the magnetic field is larger than
2 then the ground-state is ferromagnetic and the entropy is zero. When 0 < h < 2
the ground state is again unique but the model is critical. The analytic solution
obtained in [53]

S(ρ(n)) =
1

3
ln(n

√

4 − h2) −
∫ ∞

0

dt

{

e−3t

3t
+

1

t sinh2(t/2)
− cosh t/2

2 sinh3(t/2)

}

,

confirmed the logarithmic scaling of the subsystem entropy. It is interesting to
see that the effect of the magnetic field is an effective reduction of the size of the
subsystem.

In the case of the XXZ spin chain with the Hamiltonian

HXXZ = −
∞
∑

j=−∞

(

σx
j σ

x
j+1 + σy

j σ
y
j+1 + ∆σz

i σ
z
j+1

)

,

the results obtained for this model are not complete. In the case of ∆ > 1 the
ground-state is ferromagnetic so S(ρ(n)) = 0 and in the critical region (−1 ≤ ∆ <
1) the entropy scales logarithmically. As we have said, in the gapped antiferromag-
netic case (∆ < −1) we expect that the subsystem entropy will tend to a limiting
value S(∞) but at this moment we are not aware of such a computation.

Open problem: Calculate the entropy of a a subsystem in the anti-
ferromagnetic ground state of the XXZ spin chain when the number of
spins in the block is large.
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C.N. Yang Institute for Theoretical Physics, State University of New York at

Stony Brook, Stony Brook, NY 11794-3840, USA

E-mail address: korepin@max2.physics.sunysb.edu

Institute of Space Sciences MG 23, 077125 Bucharest-Magurele, Romania

Current address: C.N. Yang Institute for Theoretical Physics, State University of New York
at Stony Brook, Stony Brook, NY 11794-3840, USA

E-mail address: ipatu@grad.physics.sunysb.edu


