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The work gives a consistent and uniform exposition of all known results related to 
Heisenberg model. The classification of excitations is presented and their scat = 
tering is described both in ferromagnetic and the antiferromagnetic cases. It is 
shown that in the antiferromagnetic case there exists only one excitation with 
spin 1/2 which is a kink in the following sense: in physical states there is only 
an even number of kinks--spin waves, therefore they always have an integer spin. 
Thus, it is shown that the conventional picture of excitations is wrong in the 
antiferromagnetic case and the spin wave has spin 1/2, matrix is calculated. 

INTRODUCTION 

The one-dimensional isotropic Heisenberg model describes a system of N interacting par- 
ticles with spin I/2 on a one-dimensional lattice. The state space ~N and the energy oper- 
ator H N are as follows: 

oo 

N 

~=~ 
(2) 

Here IN is the identity operator in the space ~N ; the operators o~ have the following form: 

c~ ~ .. ~=I~...I| | | ~=~,~,3 

and they act nontrivially only in qn from the product (I); the o a are Pauli matrices 

(3) 

0)~ ~) (4) 
= ~=Q0 

I is the identity matrix in ~ . We assume in the sum (2) the periodic boundary conditions 

(5) 
+4 4 ~ ~ ~ " 

Depending on the sign of ] we distinguish the ferromagnetic case ]<0 and the anti- 

ferromagnetic case ]>0 . The problem of the most interest is to find the eigenvectors and 
eigenvalues of the operator H N and to investigate their asymptotic behavior as N § ~. 

The model under examination has been introduced by Heisenberg [I] in 1928 and has a long 
history. At first Bethe [2] proposed the procedure for finding eigenvectors and eigenvalues; 
this method is called now the method of Bethe substitution--Bethe Ansatz. Then Hulthen [3], 
des Cloiseaux and Pearson [4], Orbach [5], Yang and Yang [6-7], Baxter [8], Gaudin [9], Taka- 
hashi [10], Ovchinnikov [11], Kulish and Reshetikhin [12] et al. obtained, using Bethe's 
method, important results. 

Nevertheless, in spite of the long history and extensive literature devoted to the 
Heisenberg model the series of generally accepted results concerning this model is wrong. 
This is especially true for the classification of excitations in the antiferromagnetic case. 
Starting with the work [4] it has been accepted to consider that the simplest among these 
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excitations -- the spin wave -- has spin I. Moreover, in [11] it has been asserted that there 
exists, in addition, a whole series of one-particle excitations -- bound states of spin waves, 
which are singlets excitations with spin 0. We show here that in the antiferromagnetic case 
there exists only one excitation with spin I/2 which is a kink in the following sense: in the 
physical states there is always an even number of kinks-spin waves, so these states always 
have integer spin. However, the state of a kink can be localized, hence, we can talk about 
their scattering. 

In connection with this we have decided to reconsider the Heisenberg model. The present 
paper has the systematic presentation of all known results from a uniform point of view. An 
important methodological role in this is played by the recently created quantum method of 
the inverse problem [13-14]. 

We have already considered in [15] the most general anisotropic Heisenberg magnetic 
(XYZ-model) using the quantum method of the inverse problem. The difference between the pre- 
sent paper and that work is that here in a simpler situation we obtain more detailed results. 
Our hightened interest in the isotropic model is also related to the fact that this model 
is a component in the hierarchy of Bethe's substitutions used for solving quantum field theory 
models with color degrees of freedom (see [16-18, 12]). At first, this role of the model ap- 
peared clearly in the works of Gaudin [19] and Yang [20], devoted to the problem of two-com- 
ponent Fermi-gas and Bose-gas, respectively, and in the work of Lieb and Wu [21] devoted to 
Hubbard's model [22]. At the present time it becomes clear that Hubbard's model and its 
natural generalization for the cases of many colors and Bose-statistics is an interesting 
model of quantum field theory. It is completely integrable in the limit as A + 0, where A 
is the lattice size, and has both nonrelativistic and relativistic continuous limits. In 
the latter case we obtain a quantum field theory model with the asymptotic freedom condition. 
We devote the next paper to the detailed investigation of the relativistic limit in Hubbard's 

model. 

Now a few words about the contents of the paper. In Sec. I we recall the main elements 
of the quantum method of the inverse problem for the model under consideration and present 
the algebraic form of Bethe's Ansatz. In Sec. 3 we consider the ferromagnetic case, give 
the classification of ground state excitations and describe their scattering. In Sec. 4 we 
give a more complete classification of all eigenvectors of the operator H N for a finite N and 
use it to construct the ground state and excitations in the antiferronmgnetic case. We also 
discuss there the spin of spin waves. 

In the process of work we consult repeatedly with our colegues: A. G. Izergin, V. E. 
Korepin, P, P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin. We would like to express our 
deep gratitude to them. 

I. Algebraic Form of Bethe's Ansatz 

The main components of the quantum method of the inverse problem for the considered model 
were introduced explicitly in [23, 15]. A great role in their formulation as well as in the 
general formulation of the quantum method of the inverse problem has been played by the deep 
work of Baxter [8]. At the present time there exists a sufficiently detailed description of 
this method (see [13-14]); therefore, we shall not describe it here once again, rather, we 
imply write out necessary formulas. The derivation of these formulas in a more general situa- 
tion of the XYZ model can be found in [15]. 

We consider the local transition matrix -- an operator-valued matrix of order 2 x 2 

~-~ ~ ~ \ 

where 

+ ~ . ~ 4 , 

~ 04 +~, ~ (I .2) 

The space ~ , where the matrix Ln(X) acts, is called auxiliary to distinguish it from the 
quantum space J~N where the matrix elements act. The matrix Ln(X) can also be presented in 

the form 
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. 3 

0,=4 
(1.3) 

where the identity matrix I on the left and Pauli matrices o a act in the auxiliary space. 

The main relation 

h o l d s ,  where  t h e  t e n s o r  p r o d u c t  i s  t a k e n  i n  t h e  a u x i l i a r y  s p a c e .  The c o r r e s p o n d i n g  4 x 4 -  
m a t r i x  R(Z) has  t h e  fo rm 

gr ~ w+DI~t+} v~ (1 .5) 
~=I 

~| it has the following form: 

gC)k) = gO0 6()0 0 ~ (1.6) 
ccX) ~.X) o 

o o { 

In the natural basis of the space 

The monodromy matrix ~(X) 

where 

X 6ck)= ~+~, c&)= -f~. 
is defined by 

N 

T, cX)=L,,cX)..b4x)= R L.CX). 
t1,=~ 

1 . 7 )  

1.8) 

Similar to the local transition matrix Ln(%) it satisfies the relation 

0,5 | | 

We introduce matrix elements of the monodromy matrix as matrices in the auxiliary space 

Q ANC~) BN(X)) 
CX) = C N CX) @N Ck) ' 

The operators AN(h) , BN(Z), CN(Z), and DN(Z) act in the space ~N We set 

T N Ck) = AN(X)+ ~)NCX). 
From (1.9), in particular, we obtain commutation relations 

IT. ~x), T.~)] =o, 

[BNCX), BNCF) ] =0, 

1 . 9 )  

(1.1o) 

(1.11) 

(,1 .12) 

(1.13) 

t , . 6(~-X)  
ANCX) B N CF)=c~--~L~) BNC ~) ANCA)- ~ 6,CX) A N Cju,), (1.14) 

i Ixx-F) _ 

(1.15) 

The family of commuting operators TN(%) contains the momentum operator PN and the energy oper- 
ator H N 

-N 
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H. ~] & -~I N. (1.17) 

First, we explain the formula (1.16). Putting % = i/2 in (1.3) and using the formula (1.8) 
we obtain that the operator i-NTN(i/2) is unitary and coincides with the cyclic shift opera- 
tor in the space 

-t~ ~ ~" 
e dne~=O~+~a=~ ,s  ~ = 4 , . . . , N .  (1.18) 

Its eigenvalues are e i~j , 0 ~ P. < 2~, j - I,...,2 N, it is natural to call Pj the momentum 
of the corresponding state. Formula (1.17) is obtained by expanding the product (1.8) in 
the neighborhood of the point % = i/2 and taking into account (1.18). 

Consider the vectors 

N 

t'..= 'i 

The following relations hold: 

+~Ck) f I~=CX-+)  f l  N , 
CN C~).(] N =0 . (I. 19) 

It follows from the formulas (1.13)-(1.15) and (1.19) that the vector 

"I~F N C~ ,... ,X~) = BNCXI). �9 , BNO~)-~ N (I .20) 

is an eigenvector of the family of operators TN(%) if the numbers Z1,...,~ l satisfy the system 
of equations 

( 
L Xj+~ ~='; )~j _)~u+~ ' j = { , . . . , ~ .  (1.21) 

The corresponding eigenvalue A(%; %1,...,%1) has the form 

i N i_ ~ ~-)~j-~ ~ N~ ~')~j+~ 
Ac~;X~,.. . ,>,~}=CX+~) J--~ ~ §  J=~ ~ " (1.22) 

we note that since the operators BN(%) commute, both the vector PN(%Z,...,%I) and the eigen- 
value A(%; %z,...,%~) are symmetric functions of %1,.-.,%l- 

Comparing the formulas (1.16), (1.17) with (1.22) we see that the eigenvalues of the 
operators PN and H N have the form 

+i' ~.(.Xt,..,) 'e) = = i =~ j 

In addition to ~, it is convenient to introduce the variable P(%) 

e = ~ _ ~  ~ p c k ) =  

(I .24) 

(I .25) 
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In the variables Pj the momentum p and the energy h have the form 

p c)h~. � 9  kr = ~.= pj c~:xt, s (1.26) 

kcX~,...,Xc) = - 3 ~ C4-cos pj). (I .27) 

The formulas presented above show that the vector ~N plays the role of a vacuum, and 
the operator BN(%) has the meaning of the particle birth operator with the momentum p(%) and 
the energy 

~ x  

Below, the eigenvectors of the form (1.20) are called Bethe's vectors. 

We have not yet discussed the question of conditions which guarantee that vectors of 
that kind do not vanish. We shall consider this matter below. We shall show that a neces- 
sary condition for Bethe's vector not to vanish is 1 ~ N/2. 

We can calculate the normalization of the vector (1.20) using the commutation relation 

(1.29) 

which follows from (1.9) and the relations (1.19). Nevertheless, the corresponding combina- 
torial problem has not been solved yet. 

With the help of (1.29) we can also prove the simpler assertion that Bethe's vectors 
with different collections (Xl .... ,%1), (%~ .... ,%~,) are orthogonal. It would be also de- 
sirable to show that Bethe's vectors vanish if among the numbers hl,...,%l are those that 
coincide. For the coordinate form of Bethe's Ansatz this fact is well known and we shall 
use it below. The question about the normalization of Bethe's vectors is also discussed in 
the work of Gaudin [9] and in the recent paper of Wu, Gaudin, and McCoy [24]. 

2. 

tot 

Spin of Bethe's Vectors 

In addition to P and H, among the observable values of our system, is also the spin vec- 

N 

~ = ~ L O~ ~ 4 = ~,~,~. (2.1) 

Here and further in this paper we omit the index N in the cases when this can not cause mis- 
understanding. It is clear that operators P and H commute with S a. In other words, a repre- 
sentation of the group SU(2) acts in the space ~N and the corresponding eigenvectors are 

classified by irreducible representations of this group. We show here that Bethe's vectors 
are the leading vectors with respect to this action, i.e., the following relation holds: 

where we use standard denotations 

6+~ -----0 ~ (2.2) 

N 
~§ ~-= ~" ~i (2.3) 5§ 

~=4 "- 

It follows from (2.2) that in the isotropic case Bethe's Ansatz does not determine all eigen- 
vectors of the energy operator. Together with Bethe's vectors, ~ vectors of the form sm~ 
are also eigenvectors, where I ~ m ~< 2L and L is the spin of the representation to which 
belongs. 

Moreover, the equality 
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holds, which we shall derive below together with (2.2). From the formula for the square of 
the spin S 2 with eigenvalues L(L + I), L ~ 0 

# = Z s~ = s_ s+ + s, cs,+ i) 

it follows that for Bethe's vectors 

(2.5) 

N 
I .  = ~- - B .  (2.6) 

From (2.6) the important inequality follows: 

~, (2.7) 

which was already mentioned in Sec. I. It would be interesting to show that if 1 > N/2, then 
the system of equations (1.21) does not have solutions in finite kl,...,h 1. 

Now we are going to prove formulas (2.2) and (2.4). To accomplish this we obtain per- 
mutation relations between operators S a and A(~), B(X), C(h), D(%). Following the ideas of 
the quantum method of the inverse problem we start with local relations and calculate the 
commutator of S a with matrix elements of the matrix Ln(Z). We have 

, ~ ] . (2.8) [LnCX),Sa] = ~[l,~ ~ 

Here [ , ] means the commutator in the space ~N ; we have also used the fact that among all 

spin operators only On a are contained in the matrix Ln(X). Further, from the representation 

(I .3) we obtain 

' & a 4 L g~c ~@~. (2.9 
"/f b=1 

We rewrite the factor sbacob in the form 

~ =~[~c, c~]. 

As a result we obtain 

(2.10 

4 [Ls(X) ~ ]~n. [ Ln(.)~'), 5 ~ ] ~ .  - 2 , , (2.11 

where we emphasize that the commutator on the left-hand side is taken in the quantum space, 
and the commutator on the right-hand side in the auxiliary space. Note that we managed to 
replace the quantum commutator (2.8) by the numerical one by using essentially isotropic 
properties of the_model under consideration. Now we consider the monodromy matrix. Using 

11 ~ I! the differentiatlon property of the commutator we obtain 

N 

[ ~(x), Sa]~. = ~  Ln(• [LnC• L,~X) 

=-  = y.L.(X): .[Cn(X),~ ~. .L,~X)= - 
(2.12) 

i.e., we obtain a formula absolutely analogous to (2.11). 

ten clearly in the form 

[%~x), sJ = ~N,%( )-~,(x)% ), 

where a, B = I, 2 and o~B are matrix elements of the Pauli matrix. 

(2.13) contain the relations 

[ 5~ ,T (X ) ]=o ,  a = 1 , 2 , 3 ;  

The formula (2.12) can be rewrit- 

(2.13) 

In particular, formulas 

(2.14) 

[53, gCX)] =-sCx), (2.15) 
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[ 5 §  B(X)] =A(X)-~[]C~),. (2.16) 

Now we are ready to prove formulas (2.2) and (2.4). We note first that by construction 
the vector ~ is also an eigenvector for the operators S+, $3, moreover 

~+~=0 ~ S 3 ~ = - - ~ .  (2.17) 
The relation (2.4) follows immediately from (2.15) and from the secon d inequality in (2.17) 
Now we consider (2.2). We have, after carrying S+ through all operators B(Ij) to the vector 

Using the permutat ion re la t i ons  (1 . /4 )  and ( I .15)  we car ry  the operators A ( t j )  and D(Xj) 
through the B(X k) to the vector  R. We obtain the fo l l ow ing  sum 

5+ ~ = ~ Mj (X,,...,X~) 5CX~)... B~j_,) 5CXj+,)... 5CXOQ. ( 2.19 ) 
j=4 

To find the coefficients Mj(Iz ...,X l) we apply the method used in the algebric derivation 
of equations of the type (1.21~ (see [13-15]). Note that to obtain Mz(Xz, .... %1) we have to 
carry A(%z)-D(Iz) through the chain B(I2) ... B(%Z) tO the vector ~ using only first summands 
on the right-hand sides of the relations (1.14) and (1.15). Therefore, 

�9 

The remaining c o e f f i c i e n t s  Mj(Xz . . . .  ,X;) a re  ob t a ined  from M ~ ( t z , . . . , X ; )  by the co r re spond ing  
pe rmuta t ion  of  the  numbers X z , . . . , X Z ;  they have the f o l l o w i n g  form: 

~,j .ej 
Xj-X, , j =t , . . . ,g .  (2.21) 

We now note that the system of equations (1.21) means exactly that Mj(Xl,,..,l~) = O; j = 
l,...,l. Thus, we have proved the formula (2.2). 

At the end of this section we note that the lowering operator S- participates in the 
asymptotic formula for the operator B(X) as % § ~. Indeed, when % § 

i~ 0 ' "' ~ i i~ II.)I) ' (2.22) 

from this we obtain 

5 (~) "-" T >-'- ~ = ~,X S_. 
n=4 

(2.23) 

Hence the vector of the form 

which satisfies the conditions 

and 

= S _  5C  )N , 
(2.24) 

(2.25) 
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can be interpreted as Bethe's vector for which m values of I in the chain ll,...,l[+ m equal 
infinity. Note that formally the system of equations (1.21) also allows us to add to any 
solution with finite l's the values I = ~. We note that in the variable p values p z 0 (mod x 
2v) correspond to these I. 

The formulas (2.2) and (2.4) are essentially in Ovchinnikov's paper [11]. Gaudin in [9] 
derived them using the explicit coordinate form of Bethe's Ansatz. 

The Case ~<0 �9 
p r o v e d  r e l a t i o n  

3. Ground State and Excitations 

When ]~0 the energy operator H is positive. 

3 a $ ~' 
[I | I- Z 6 | =q(I@I- ~6%o ~) 

a:4 ~:4 

it follows that H can be represented in the form 

N 

H =-3 Z. L6 | +6~eo~.-I.). 

Indeed, from the easily 

(3.1) 

(3.2) 

The operator H annihilates the vector 9 

H.O. = 0 ;  (3.3) 

therefore, we can consider this vector as the ground state -- the ferromagnetic vacuum. The 

spin of this state is maximal 

N hn = ~-. (3.4) 

Together with it we have N more eigenvectors 

.Q~:S~-Q, ~/=4,...,N, (3.5) 

which annihilate H. We show that the other eigenvectors of the operator H have positive 

eigenvalues. 

For the "one-particle" Bethe vector 

34; (k) = B(X)~ (3.6) 

Eq. ( ] . 2 3 )  g i v e s  t h e  f o l l o w i n g  r e l a t i o n  b e t w e e n  a d m i s s i b l e  v a l u e s  t 

e 

In the limit as N § ~ admissible p fill the whole interval [0, 2~); the corresponding I run 
over the whole real axis. The excitations of this type are commonly called magnons. 

For the "two-particle" Bethe vector 

CX~, X2) = B CX,) B 0,~) 0_. 
The system of equations (1.21) has the following form: 

( 3 . 8 )  

( 3 . 9 )  

In the limit as N § ~ its real solutions independently run over the whole real axis. Indeed, 
extracting the N-th root of both sides of the equations (3.9) we obtain that 
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X,'  i ~cx,-ka 
- =  ~, e 

X,+-~ (3.~o) 

kl - ~ =  l::;i e 

where ~z and ~2 are two arbitrary N-th roots of I, and ~(X) is the principal value of the 
argument of the function (X - i)/(l + i), 0 x< ~(~) < 2T. In the limit as N + oo the argu- 

ments of ~ and ~2 independently run over the whole segment [0, 2~) and ef~ ~q] tends to 

I, so Eqs. (3.10) become uncoupled and can be solved trivially. The corresponding Bethe's 
vector describes the state of scattering of two magnons. 

Equations (2.9), however, also have complex solutions. We set 

Taking the moduli of both sides of the first equation (3.9) we obtain 

Assuming Yl > 0 we obtain that the left-hand side of (3.12) decreases exponentially as N § ~. 
Thus, with the exponential accuracy the relations 

~i =~, ~I-~ =] (3.13) 

hold. Considering the absolute value of the second equation in (3.9) we see that y2 ( 0, 8o, 
we do not lose generality assuming that Yl is positive. Further, multiplying the first equa- 
tion in (3.9) by the second we obtain 

S u b s t i t u t i n g  here (3.13)  we get the r e l a t i o n  

~ t + ~ ( ~ t §  = 4 , (3.15) 

from this we conclude that y~ = I/2. 

Therefore, asymptotically as N § ~ the solution of (3.11) is characterized by one real 
number x and has the form 

where x parametrizes the total momentum of the state 

For  t h e  c o r r e s p o n d i n g  e n e r g y  we o b t a i n  

kO,,,>,o =Lc>,a + ~,cx~)= ~ ',,-~7 + ~ / -  

= ~ ~ ,  + P = ~ [>, x,+• , (3. ~8) 
= q 

(3.16) 
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o r  

( 3 . 1 9 )  

To shorten the calculations presented above we have taken some liberties in treating hl and 
%2 as independent variables. The energy h(hl, %2) of the constructed state is positive and 
less than the energy of two magnons with the momenta Pl and P2 which are bound by the rela- 
tion pl + P2 ~ p(hl, %2) (mod 2~). Therefore, it is natural to call this state the bound 
state of two magnons. 

Bethe's vector 

~fC~,...~g)=BCX4). �9 - BCX{)~ ( 3 . 2 0 )  

for any arbitrary 1 can be investigated similarly. To the real ~'s there corresponds a state 
of 1 independent magnons. The complex X's gather into "strings" of length 2M + I -- collec- 
tions of 2M + ~ numbers of the form 

+I,...,M-4 ,M; (3.21) 

where M is a positive integer or half-integer number. Magnons themselves can be considered 
as strings of length I. 

The proof of the fact that complex X's have the form (3.21) when N § ~ is similar to 
the case of the str~ng of length 2 which was considered above. Namely, together with the 
number h = x + iy with y > O, the solution Zi,...,h I of the system (1.21) also contains ~ = 
x + i(y -- I) [cf. (3.13)]. Further, the fact that the total momentum is real [cf. (3.15)] 
shows that such Z's group in chains symmetric with respect to the real axis -- the strings 

of the form (3.21). 

Thus, in the general Bethe vector (3.20) 1 numbers ~I,...,~I gather into strings of dif- 
ferent length. We denote by VM the number of strings of length 2M + I, M = 0, I/2,... and by 
Xj,M, J = I,.-.,VM the real parts of the parameters h which belong to the j-th string. We 
denote the total number of strings by q. We have 

= VM, = ( M+4)V M. (3.22) 

The collection of integers (1, q, {~M}) constrained by the relation (3.22) characterizes 
Bethe's vector (3.20) up to the determination of the q numbers Zj,M. We call this collection 
the configuration. The energy and the momentum of Bethe's vector, which corresponds to the 
given configuration within exponential accuracy as N § ~ consist of q summands which repre- 
sent the energy and the momentum of separate strings. The energy and the momentum of the 
string of length 2M + I will be calculated later. 

For the parameters %j,M of the given configuration the system of equations holds which 
is obtained from (1.21) in the following way. For a chosen string of length 2M + I we find 
the product of those equations from (1.21) which contain the parameters hj belonging to this 
string. On the right-hand side we find the product over k of the factors (Zj -- h k -- i)/ 
(%j -- h k + i) according to the splitting of the variables % into strings in the given con- 
figuration. To present the equations obtained it is convenient to introduce the denotation 

X-~ (3.23) %CX)= 

We have the equalities 

M 

M 

~-'-M 

(3.24) 

(3.25) 
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(3.26) 

The required system of equations has the form 

N ),',M __ 

These equations were introduced and used by Takahashi [I0] and Gaudin [9]. Their dis- 
tinctive feature is that they contain 0nly real parameters %j,M. The unused equations from 
the system (~.21) for the complex %j are satisfied With exponential accuracy as N + ~. Here 
we have only outlined the proof of this assertion. The detailed proof can be found in [9]. 

We calculate the momentum and the energy of the separate string of length 2M + I. For 
this we use the formula (3.24) which implies that 

and 

M + - ~  . = _  
(3.29) 

Thus, as N § ~ Bethe's vectors can be interpreted in terms of many-particle states of 
scattering of magnons and also in terms of their bound states -- the s~ings of length greater 
than I. The one-particle state Pm is characterized by the momentum p and the energy 

kM(,p) = CI 
M= 0,~, .. �9 (3.30) 

With N growing these states become more and more degenerate; the degree of their degeneration 
equals N -- 4M -- I. We can omit this degeneration if in the passage to the limit as N § 
we consider states which belong to the incomplete tensor product, in the sense of von Neu- 
mann [25], of the spaces qn which adjoins the state ~. This limit space ~F is isomorphic 

to the incomplete tensor product of the Fock spaces for the infinite number of excitations 
~M. Among all actions of the group SU(2) in the space ~N only the action of the operator 

Sa -- (N/2)I N survives in the space ~F. 

This limit situation can be naturally described in the formalism of the quantum method 
of the inverse problem if we consider the limit of the monodromy matrix ~(~) as N + ~ regu- 

larized with respect to state ~. The corresponding procedure was explicitly presented by 
Kulish and Sklyanin in [23] and is analogous to the procedure described in [13, 26] for the 
case of bosons with 3-type interaction (the quantum nonlinear Schr6dinger equation). It is 
natural, for this purpose to renumber the lattice nodes assuming that n changes asymptotically 
with respect to O; e.g., for N odd --(N -- ~)/2 ~ n ~ (N -- I)/2. In the space ~F there exists 
the limit 

NH -~-- ~-~- 

(3.31) 

For limit operators the following relations hold: 

[ B cx), B p)] = 0 , A fl = fl, 

4 
AcX)B( ) = BI] )AcD. 

(3.32) 
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The relation (3.32) can be taken as the base for the definition of the excitations spectrum 
described above in the same way as it was done in [27]. 

The formula (3.31) contains the diagonal matrix which is obtained from the operator 
Ln(~) after formal substitution 

~ , ~m=O, ~=I �9 (3.33) 

This substitution symbolizes the boundary conditions imposed on the spin operators in the 
space 

2 ~--->l ~r I ~ 1 - ' ~  o~  . (3.34) ~-----~0, ~ >0, 
in the coordinate realization is the closure of the linear span of vec- The state space ~F 

tors of the form 

+ 
where k, m1,...,mk < ~. The operator o n acts in this space and the vectors (3.35) annihilate 
this operator as fnl § ~. On these vectors in the limit for large in[ the operator o~ be- 
comes an identity operator. As to the operator o~, for in[ § ~, its image lies outside of 
the space ~F and so it vanishes in the weak sense. The rigorous investigation of the oper- 

ator H in the Hilbert space ~F is presented in a number of works by Thomas and Babbitt [28- 

30]. In [28-29] a proof for the expansion theorem is given in terms of the eigenvectors of 
the operator H in the space ~F ; moreover, it is shown that the limits of Bethe's vectors as 

N § ~ form a complete system. In [30] the scattering theory is constructed for these states 
and the eigenvalues of the S-matrix are calculated. In particular, it is shown in [30] that 
the configuration does not change during the scattering and the whole effect of the scatter- 
ing is reduced to the multiplication by a phase factor. 

In the framework of the quantum method of the inverse problem the calculation of the S- 
matrix appears to be the simplest. By analogy with the case of the quantum nonlinear ScbrSd- 
inger equation considered in [13] we introduce ZamolodchikoV's operators 

M -4 

Z M (X) = El  BCX+i~)A (X). ( 3 . 3 6 )  
~:-M 

As follows from (3.32) these operators satisfy the permutation relations 

where 

ZM(.~) ZMC~):ZM(.~, ) ZM(,)~ ) SHM,(,~.L-~)~, (3.37) 

SM, M, (jk) = VM, M' '(,~,) (3.38) 
[see (3.26)]. 

For the given configuration in and out -- states are described by the general formula 

(see [31]) 

v~ 

MFI ~ ZM CXj,M').kr)., ( 3 . 3 9 )  

where for the in-state all parameters %j,M are ordered from right to left in increasing order 
and for the out-state they are ordered in decreasing order. The process of the multiparticle 
scattering is reduced to a sequence of two-particle ones and the complete phase factor is the 
product of q(q -- I)/2 two-particle factors SM,M'(H%j,M -- %j',M'[). The structure of the poles 
of the eigenvalues of the S-matrix agrees with the interpretation of the strings of length 
2M + I, M > 0 as the bound states of 2M + I elementary magnons. 

252 



4. Ground State and Excitations 

The Case =]>0. When ~>0 the energy operator is negative and the eigenvector with 
the eigenvalue of minimal modulus is the ground state -- the antiferromagnetic vacuum. It is 

clear from the picture of excitations described in Sec. 3 that for a given N this vector cor- 
responds to the largest possible number of strings of length I; I = IN/2]. In this section 
we assume that N is even; in this case the ground state is not degenerate, its spin equals 
zero and the spin of all states is even. To characterize the ground state excitations we have 
to car~y out more detailed investigations of the system of equations (3.27). Therefore, at 
the beginning of this section we shall consider the question concerning the parametrization 
of all its solutions for large but finite N. For this following Bethe and all subsequent 
authors, we pass to the logarithms in this system. We note that (3.27) contains only the 
factors of the form 

X - ~  
Vo C~--~) = ~ , (4.1) 

where % and a are real. We define the branch of logV0(%) making cuts in the complex plane 
along the imaginary axis from i to i~ and from --i~ to i. In this case 

4~ ~ ~ CX): ~ 0 ~ ,  X +91~, (4.2) 

where arctan~ is the main branch of the arctangent, --~/2 < arctan ~ < ~/2 for ~ real. 

Taking the logarithm of both sides of the equations (3.27) we obtain the system of equa- 
tions 

- Xj,M 4 ~ 
M: ~:~ M.M~ J, 4 , ~ 

where 

M4+M~ i 

L:IM C M~I 
the prime here means that in the case MI = M2 we omit the summand arctan X/L with L = 0. Each 
of the numbers Qj,M is a sum of some integer, which characterizes the full increment of ~he 
argument of the right-hand side of (3.27), of the number N/2, which arises from the replace- 
ment of(i/i)logV0(X) by 2arctan ~, and of the analogou s summand in the right-hand side of 
(4.3). 

Integer and half-integer numbers Qj,M parametrize the possible solutions of the system 
of equations (4.3). While investigating this system we assume that for M given the numbers 
Qj,M do not coincide. According to the remark at the end of Sec. I this leads to the vanish- 
ing of the corresponding Bethe's vector. We also. note that from the system (4.3) it follows 
easily that if for a given collection of the numbers Qj,M, which are different for every M, 
there exists a solution {%j,M}, then for every M the numbers %j,M do not coincide. Moreover, 
the corresponding Bethe's vector does not vanish. 

We define the possible values of the numbers Qj,M for a given configuration (l, q, {~M})- 
Since arctan% is odd admissible values of Qj,M are located symmetrically with respect to 0 

-QM ~ Q4,M <Q~.M < " " " < QVM,M ~ QM (4.5) 

and are integers of half-integers depending on Q~ax. We assume that for every M the numbers 
Xj,M are ordered in such a way that they increase from I to ~M when j is growing. The largest 
admissible value Q~ax is determined from the following principle: for Qj,M = Q~ax + 2M + 1 
the corresponding solution Xj, M equals ~. We recall that Xj,M parametrizes a string of length 
2M + I, so to "push" this strzng to ~ it is natural to assume that the maximal admissible 
value Q~ax must be exceeded by 2M + I. We note now that 

C;PM.M~ C ~176 = - CPM,, M~e ~ )  = ~ ~ ~ ( M,, M ~), ( 4.6 ) 
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where 

9.mi~ (M~,M~ +4 fo, M~=~ M~, 
~M~ + ~ ~ for M~ = M:. 

From Eqs. (4.3) and (4.6) we obtain the following value for Q~ax 

(4.7) 

.m~ N ' 4 
~M T ~M' ]('M'M)VM' (4.8) 

The restrictions for integer and half-integer numbers, which participate in equations of 
the type (4.3) were first obtained by Bethe himself in [2]. He used the different branch of 
the function log V0(%); however, we can recalculate his restriction using our terms and obtain 
the formula (4.8). A different derivation of (4.8) is presented in Gaudin's work [8]. 

We call admissible values for the numbers Qj,M the vacancies. We denote number of va- 
cancies for every M by PM" We have 

PM =~QM § : N - i ~  :I(M,M)VM, (4.9) 

Now we are going to describe the parametrization of solutions of the system (3.27) and 
together with them of all Bethe's vectors. We formulate the main hypothesis: to every admis- 
sible collection Qj,M there corresponds a unique solution of the system (4.3). This hypo- 
thesis explicitly or implicitly was accepted by all specialists beginning with Bethe. Ap- 
parently for its justification we should use an extension to arbitrary admissible configura- 
tions of the Yang and Yang variational principle [6], which they formulated for the vacuum 
configuration I = q = v0 = N/2, ~M = 0 for M > 0. Thus, we assume that the numbers Qj,M play 
the role of the complete collection of parameters which classify Bethe's vectors. 

We show that the hypothesis just formulated is consistent with the number of states in 

~N , ~r~N=~ N . TO a given configuration (l, q, {~M}) there corresponds the number of 

states Z(NI{~M}) determined in the following way: 

Z (NI{VM}):~ Cp vM �9 (4.10) 

Our nearest goal is to calculate the number of states for all configurations with fixed I 

Z C N , ~ ) = ~  ZCNI{VM}). 
~ (~M+0YM ={, 
M 

(4.11) 

To calculate Z(N, ~), we, following Bethe [2], use an important property of the numbers PM, 
which follows directly from (4.9), 

i 

PMCN %}):PM (N 
I 

where ~M = ~M+I/2 and, or course, 

=~VM. 

We introduce the partial number of states 

Thus, 

M>O, (4.12) 

= Y Z (NI{VM}). 

~vM-- ~ 

Z (N,~,)= y Z (N, t,,q,). 
q,=O 

(4.13) 

(4.14) 

(4.15) 
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We obtain from (4.12) that 

v~ 

Z (.111{ VM)) = CN_~e+Vo Z (.N-s162 

from this we obtain the recurrence relation for Z(N, l, q) 

with the initial condition 

0r v 

Z (N, f, ,ar = ~ CN-r162 Z (.N-~or ,~,-~,g-Y) 

(4.16) 

(4.17) 

Z (.N, t ,~)=N -1. (4.18) 

The solution of this relation with the given initial condition was found by Bethe [2] and has 
the form 

N-~6+( Cq~ q,-4 Z ( N , ~ , ~ ) -  N-C+r N_6HC6-r �9 (4.19) 

The summation in the formula (4.15), taking into account (4.19), can be performed trivially 
and leads to the result 

Z C N , ~ )  = (4.20) 
N- ~,H "~N -'~N N �9 

This is exactly the formula that was obtained by Bethe. 

We now recall that every Bethe's vector with a fixed Z ~< N/2 is the leading vector in 
the multiplet of dimension N -- 21 + I. Thus, the full number of states Z generated by the 
admissible numbers Qj,M equals 

N 

(4.21) 

By integration by parts the sum (4.21) can easily be transformed to the form 

+% C N �9 (4.22) Z = C  N 
~=0 

Thus, we have shown that the main hypothesis about the parameterization of Bethe's vectors 
yields a complete system of the eigenvectors of the operator H. We can now consider the main 
problem of this section -- the classification of states with energy close, to the energy of 
the ground state as N § ~. 

The ground state, as was already remarked, corresponds to the configuration 

=4 = ~ = -~N ~=0 , M>0. (4.23) 

In this configuration the number of vacancies for strings of length I also equals N/2. Thus, 
the corresponding numbers QJ,o fill in all vacancies and belong to the segment 

_N_ 
4 + ~aj,O ~- ~ ~ (4.24) 

this proves once again that this state is not degenerate. 

Consider now examples of the simplest excitations: 

The spin of this state also equals 0. For the strings of length I the number of vacancies in 
this configuration equals N/2; for the string of length 2 there is one vacancy, the only ad- 
missible Qj,I equals 0. Thus the configuration described is determined by two parameters: 
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the positions of two unfilled vacancies -- "holes" -- of the strings of length I which vary 
independently in the interval (4.24). 

2. ~=~ =% = ~-I; VM=0 , M>0. (4.26) 

The spin of this state equals I, so it is the leading vector of the triplet. The number of 
vacancies for the strings of length I equals N/2 + I. Thus, this configuration also corre- 
sponds to the two-parameter family of Bethe's vectors and is paramerized by two holes. 

Examples I and 2 belong to the configuration class ~AF , which can be characterized in 

the following way: the number of strings of length I in each configuration from ~AF dif- 

fers by a finite quantity from N/2; therefore, the number of strings of length greater than 
I is finite. If v0 = N/2 -- k0, where k0 is positive and finite, then (4.9) implies 

M>0 (4.27) 

p I(M,M')v.,. M:,O 
M M';'O 

(4.28) 

hence, we have 

~- '~ ' ~M <~"  ' M>O. (4.29) 

Moreover, it follows from (4.27) that the number of holes for the strings of length I is al- 
ways even and equals 2 only for Examples I and 2. It is useful to imagine the class ~AF 

as "the sea" of strings of length | with a finite number of strings of length greater than I 
irmnersed into it. We shall prove below that the class ~AF can be characterized as the 

class of such configurations for which the corresponding states have, when N § ~, finite ener 
energy and momentum with respect to the antiferromagnetic vacuum. 

Following Hulthen and des Cloiseaux--Pearson we can give the complete characterization 
of the states described above for N § ~. The fact is that for N § ~ the numbers lj, 0 are 
distributed uniformly over the whole real axis with some density. This density satisfies a 
linear integral equation which easily can be solved explicitly. With the help of this den- 
sity we calculate the main observables for a given state. 

We consider this situation in greater detail. We begin with the case of the ground 
state. Equation (4.3) has the form 

N 

CL'[,C'~ ~X] = "~+  -~ ~.  O)~(X]-X,). (4.30) 

Here and below we omit the subscript 0 of the numbers lj, 0 and Qj,0; the numbers Qj increase 
monotonically with j in the segment [--N/4 + I/2, N/4 -- I/2]. For N § ~ we have 

�88 --~ ~Z, -�88 , ~j~,(.~),  (4.31) 

where l(x) is a monotone function, moreover, I(--I/4) = -~ and I(I/4) = ~. A rigorous proof 
of this can be found in the Yang and Yang work [6]. Replacing the sum by the integral in 
(4.30) we obtain a limit equation 

• 
q 

OY~r ~C~)=~0C + I ~(~)-~C~))~ �9 (4.32) 
.! 
q 

More detailed investigation with the application of Sonin's fonrmla for the replacement of 
sums by integrals shows that Eq. (4.32) approximates (4.30) with an error which is 0(I/N2). 
We introduce the function x(1) inverse to l(x). The function 
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i 

I (4.33) 

plays the role of the density of the numbers ~ in the interval d~. 
we obtain for 0(%) Hulthen's integral equation- 

-CO 

Differentiating (4.32) 

(4.34) 

which can be solved by the Fourier transform. Note that 

i,~,~ -I~jl 

(4.35) 

hence, 

(4.36) 

The corresponding energy and momentum have the form 

Moreover, 

N ~ ~ -I~I 

P = ~ PCXj)=N I PCX)? CX)~X-N~C~a%~)'-T , 
~r-1 -00 

(4.37) 

(4.38) 

s - "  = ~ ~ (4.39) 

which, of course, was obvious beforehand. 

We consider now the excitations from Examples I and 2. We start with the simpler Ex- 
ample 2. Equation (4.3) has the form simil@r to (4.30) 

-- N + ~- ~ ( ~  -xm) ' (4.40) 

but now the numbers Q~ lie in the segment [--N/4, N/4] and have two blanks -- holes. We denote 
the blanks by Q~h) an~ Q~h), Q~h) < Q~h). For 

-N-~ ' -N-- - + ~ '  N (4.41) 

where O(x) is the Heaviside function, 8(x) = 0 for x ~ 0, @(x) = I for x > O. 
tion 

0J~ ~C~) =~ +~(@(~-~)+ 0C~-~ + ~ ~[~)-~C~))~ (4.42) 
4 

is again satisfied with an error which is 0(I/N2). For the function pt(X), determined by the 
formula similar to (4.33), we obtain the linear integra& equation 

The limit equa- 
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00 

- ~ 0  
(4.43) 

where I i are t h e  parameters of holes, I i = l(xi) , i = 1, 2. 
form 

It is obvious that pt(1) has the 

where the function o(I) satisfies the des Cloizeaux--Pearson integral equation 

The solution has the form 

(4.44) 

(4.45) 

i /, 4XB 4 

The e n e r g y  and  t h e  momentum o f  t h i s  s t a t e  m e a s u r e d  f r o m  t h e  g r o u n d  s t a t e  h a v e  t h e  fo rm 
o0 

~ ~Xl, X~)= N I ~)~t~)-~)) ~. = ~X4)4 g CX~) , (4.47) 
.O0 

-a~ (4.48) 

where 

- 0 0  

o0 

(4.49) 

(4.50) 

moreover, 

g = - ~-s~. (4.51) 

We see that the momentum Kt(ll , 12) varies over the interval [0, 2~), i.e., over the full 
zone, when Ii and 12 independently run over the whole real axis. Moreover, the total spin 
of the state can be calculated by the formula 

.5 = - f (,~CX-X,) § &), =4. (4.52) 

We now consider Example 2. Denote by I s the only number among lj,i/2 which character- 
izes the string of length 2; we will denote by lj the numbers ij,0 for strings of length I. 
Equations (4.3) are split up into two equations 

~-~ 

j--4 
(4.54) 
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where 

x (4.55) 

Moreover, N/2 -- 2 numbers Qj vary in the segment --N/4 + I/2 ~ Qj ~ N/4 -- I/2, so among them 

(h) and ~(h) Q~h) < Q~h) t h e r e  a r e  a g a i n  two h o l e s  Q~ ~2 , . 

As a b o v e  we c a n  c o n s i d e r  Eq .  ( 4 . 5 3 )  a s s u m i n g  t h a t  A s i s  a n  a r b i t r a r y  p a r a m e t e r .  We 
determine it from Eq. (4.54). For the density ps(X) we obtain the equation 

~ p ~ c X ) +  I ~ _ ~ ,  _~ , _ _ ~  _ ~ _ 

the solution has the form 

psCX) = p CX) + -~ (.o Cx,X 0 + ~Cx-XO + ~Cx-xs)), 

where p(%) and o(X) were introduced above, and m(X) satisfies the equation 

~oCX) + I 1 + C~-~) ~ 

(4.57) 

(4.58) 

The solution of Eq. (4.58) has the form 

-~0  

I 
- 0 0  

(4.59) 

To determine %s we consider the passage to the limit as N § ~ in Eq. (4.54) 

OO CO 

(4.60) 

The first integral on the right-hand side of (4.60) is equal to the left-hand side for every 
A s. Further, since ~(%) is odd and w(%) is even, the last summand in the second integral 
vanishes and we obtain the following condition to determine As: 

I (]~C~s - (4.61) 

We have 
OO 

(4.62) 

Thus, the condition (4.61) has the form 

which has the solution 

(4.63) 

~4+ X~ (4.64) Xs= 
Therefore, the string parameter %s is determined uniquely. 

The remarkable fact is that our string does not have a contribution to the energy and 
the momentum of excitation. Indeed, it is easy to show that 
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- ~  -00 

and similarly for the momentum 

(4.65) 

where hl/2(~s) and pl/2(~s) are the energy and the momentum of the string of length 2, given 
by t h e  f o r m u l a s  ( 3 . 2 8 )  and ( 3 . 2 9 ) .  We have  now t h e  e x p r e s s i o n s  f o r  t h e  e n e r g y  and t h e  momen- 
tum 

gs LX~ ,X~) = I~LXs)+ N I ~CX)(ps(~)-p(X))dX=g~X,)+~(~=)~ (4.67) 

O0 

(4.68) 

where the functions E(%) and <(%) are introduced in (4.49) and (4.50). Thus, the energy and 
the momentum of the constructed state are the same as in Example 2. The only difference be- 
tween these states is the value of the spin. The spin of the latter can be calculated with 
the help of the formla 

~o 
C 

,5 = - e - 1 (,~ocX)+mcX))gX = 0  (4.69) 

Formulas analogous to (4.52) and (4.69) were first introduced by Korepin in [32] for the cal- 
culation of the change in the massive Thirring model. 

We also note that formulas (4.65) and (4.66) are particular cases of the general theorem 
which states that in configurations from the class ~AF the contribution of the strings of 

length greater than I to the energy and the momentum vanishes. Indeed, we can prove, in the 
manner similar to that of Examples I and 2 above, the additivity of the contribution of the 
strings of length greater than I in the density 0(%) for the strings of length I. The func- 
tion ~M(E), which corresponds to each string of length 2M + I > I, satisfies the equation 

~ ~M (~) ' ' ~MQ~)§ I I+~X_~f~=-CPM,O(). (4.70) 

The solution has the form 

~ ' , ,  -i,X~ M 
wMcx ) = ~  ~MCg)e a g -  ~ I M ~ '  

-MIni 
~.~,g) = - e  

(4.71) 

The corresponding contribution in the energy is 

(4.72) 

We consider the momentum in the same manner. 

This fact is important for the classification of all states from the class ~h~ By 

virtue of the additivity mentioned above their energy and momentum consist of the energies 
and the momenta of an even number of holes in the sea of strings of length I and thus, are 
finite. The role of strings of length greater than I is reduced to the separation of this 
states with respect to the spin. The spin can be calculated by Korepin's formula 
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S =-  ~ C~M+I)VM- I I~C~- LVM)dCX) + ~-'. VM~M~X)I~: - ~ C~M+OVM-~I~CX)~X. (4.73) 

Each of the states which corresponds to a configuration not included in the class ~AF 

has an infinite relative energy for N § ~. We have not carried out an accurate investigation, 
however a simple consideration of all possible examples proves this convincingly. Indeed, 
the configurations (l, q, {VM}) with finite q have an infinite relative energy. Further, 
the configurations with the sea of strings of length greater than I also have infinite energy 
with respect to the ground state, since the energy of the strings of length 2M + I, M > 0, is 
always greater than the energy of the collection of the strings of length I with the same 
momentum. Therefore, the condition that the relative energy is finite allows us to separate 
from the unseparable for (N § ~) space ~ the separable subspace ~AF spanned by vectors 

which correspond to configurations from the class ~F. 

Consider now the interpretations of our results in terms of quantum field theory. We 
assume that the considerations presented above show that all antiferromagnetic vacuum excita- 
tions describe scattering states only of an even number of quasiparticles of one kind with 
momentum running over half of the Brillouin zone --~ ~ K ~ O, and with the dispersion law 

g(~)=-~ . Individual one-particle states do not exist. In this sense the quasiparticles 

are kinks and resemble the solutions in the quantum sine-Gordon model [32, 14]. The spin of 
a kink --a spin wave equals I/2. Indeed, the states from Examples I and 2 have spin 0 and I 
and are the leading vectors composed of two kinks. In the first case the spins of kinks are 
antiparallel, in the second case -- parallel. 

More formally, we assume that the Hilbert space ~AF is decomposed in the direct inte- 
gral 

= 7_ . . .I  
~=0 ~ ~ * : 

and d i f f e r s  from the usual Fock space for  bosons wi th  spin I /2 by the ru le  which forbids the 
states wi th  an odd number of p a r t i c l e s .  Since t he i r  momenta change independently we may as- 
sume that a s ingle k ink can be loca l ized and so, i t  makes sense to t a l k  about t he i r  scat te r -  
ing. We calculate the corresponding S-matrix in the next section. 

We note that the example considered above represents a phenomena which in quantum field 
theory is usually called decoloration. Indeed, the initial model is invariant with respect 
to the group SU(2) whereas physical states are classified by SU(2)/Z 2 ~ SO(3), where Z 2 is 
the center of SU(2). Kinks (analogs of quarks) fly out but their number in physical states 
is necessarily even. 

Our interpretation of excitations fundamentally differs from the generally accepted 
picture which can be traced back to des Cloizeaux--Pearson. Namely, in [4] for a finite N 
the set of states with spin I was presented, which, according to the authors, transfers to 
the one-particle triplet state when N § ~. The momentum of this state changes in the whole 
zone which in this case has the form--~ ~ K ~ ~. The dispersion law has the following form 

6C~) = ~l~J �9 (4.75) 

Further, in [11] it was stated that the des Cloizeaux--Pearson excitations are not the only 
one-particle excitations; in addition to them there exist bound singlet states with the dis- 
persion law 

8 ~ ) = ] ~ 1 5 ~ I  , ""~':$~ ~ "~"" (4.76) 

Finally in [33, 34], the results of [11] were criticized; however, the authors of these pa- 
pers assumed as before that there exist many excitations , including singlet excitations, with 
the dispersion law (4.75). Thus, we have contradiction which requires resolution. 

In one phrase this resolution consists of the following: the authors of all works men- 
tioned above artificially separated a one-parameter family of vectors from the general two- 
parameter family of the general form by fixing one of the parameters. 
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We explain it in greater detail. The des Cloizeaux--Pearson excitations in our terms 
have the following form: the configuration of Example 2 is considered, where two nonfilled 
vacancies are chosen in a special way 

a) Q(h) = _~max, Q(h) is arbitrary, 2~Q2/N = K2, --~/2 ~< K2 ~< ~/2; 

b) QSh) is arbitrary Q(h) = Qmax 2~QI/N = KI --~/2 ~< KI ~< ~/2 

We assume that the set of vectors thus obtained is characterized by the parameter 

, 

K (4.77) 

O ~  ~ . 

From the calculations presented above it is clear that for such set of vectors .the dispersion 
law indeed has the form (4.75). However, it is equally clear that this set is a particular 
case of the vectors from the two-parameters with the value of the momentum of one of the 
quasiparticles fixed. 

We explain now in general terms what we have in mind distinguishing one-particle states 
from many-particle ones. The space of states ~ can be decomposed in the direct integral 

= I" ~ J~ C~") (4.78) 

over the eigensubspaces of the momentum operator. The one-particle state T(K) with the mo- 

mentum K is a vector with the finite norm in ~CK) �9 At the same time, the two-particle state 

~(KI, me) has in ~C~) , for K = Kl + r2, an infinite norm. Therefore, by fixing one of the 

arguments in the two-particle state we can not obtain that it has a finite norm in ~ )  �9 

Of course, our considerations can become rigorous only after we prove the expansion 
(4.74). Nevertheless, we believe that our interpretation is much more natural than the con- 
struction of des Cloizeaux--Pearson, expecially after their construction was interpreted in 
terms of fillings of admissible vacancies. 

We can similarly consider other false excitations. For example, the excitation from 
[11] with the dispersion law (4.76) are the sum of the two des Cloizeaux--Pearson excitations 
with coinciding momenta and, moreover, it requires the involvement of a string of length 
greater than I with a certain momentum. All this shows that even the computer calculations 
made in [4, 33] can lead to misunderstanding if interpreted incorrectly. 

Apparently, technically, the simplest method of the resolution of the "misunderstanding" 
discussed above is the calculation of the norm of the state (3.20) in the space ~N �9 The 

states which correspond to configurations from Examples I and 2 should have a norm which dif- 
fers from the ground state norm by a factor proportional to N2; this would provide obvious 
evidence of their two-particle nature and justification of the expansion (4.74). In this 
connection the combinatorial problem, mentioned at the end of Sec. I, becomes particularly 
appropriate. 

With this we finish the classification of excitations in the antiferromagnetic case. 

5. Scattering of Spin Waves 

In this section we consider one on another scattering of two spin waves. As in the 
ferromagnetic case the full S-matrix can be factorized and all excitations are reduced to 
the two-particle ones. However, unlike the ferromagnetic case, for which the kind of par- 
ticles (the length of the string) does not change during the scattering, in the antiferro- 
magnetic case the only excitation -- kink is characterized, in addition to momentum, by the 
spin. The general form of the two-particle S-matrix for quasiparticles with spin I/2 is 
given by the formula 

where a, b, c, d = I, 2 and ~i, X2 are parameters of colliding particles. 
singlet phase factors have the form 

(5.1) 

The triplet and 
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St= 54 +S~ , .$~:-5~-S~ . (5 .2)  

At t h i s  w r i t i n g  on ly  one method f o r  the c a l c u l a t i o n  of  phase f a c t o r s  f o r  s c a t t e r i n g  of 
holes in  the sea has been d iscussed in  the l i t e r a t u r e ;  t h i s  method was based on the momentum 
of one hole in  the presence of another  ho le .  The method was developed by Korepin [32] in  
quantum theory  of  s o l i t o n s .  In  [12] Ku l i sh  and Reshe t i kh in  ca l cu l a ted  S t ( l i  , 12) us ing  Kore- 
p i n ' s  method. 

We present  here a formal  d e r i v a t i o n  of express ions f o r  S t and S s by g e n e r a l i z i n g  the 
procedure with Zamolodchikov's operators from Sec. 3. For this, it is sufficient to study 
eigenvalues of the S-matrix on Bethe's vectors, since they are the leading vectors, and in 
every nonreducible representation of SU(2) the S-matrix is proportional to the identity oper- 
ator. We recall the structure of Bethe's vectors for the antiferromagnetic vacuum and triplet 
and singlet two-particle states 

~AF =~ ~(~])n , (5.3) 

~t(X, ,X~ ) = 9 B(.~] ) ~ ,  (5.4) 

-O-sck, ,^# = ~ k - - T - , ~  ~ - - v - ~  T i , (5.5) 

where for N § ~ the numbers lj, %}t), and 12 are the hole parameters. We denote the operators of 
(X), and ps(%), respectively; and Iz are the hole parameters. We denote the operators of 
creation of the states ~t(Iz, 12) and ~s(%i, 12) from the state ~AF by Bt(ll , 12) and Bs(li, 
%2), respectively. Formally Bt(Iz, %2) is determined as follows: 

-4  �9 [ 

where we used the fact that operators B(1) commute and the formula (4.45). We see that 

B t (X~, k)  = B~(X~) B~i,~ (X~), 

where the operator 

(5.6) 

(5.7) 

(5.8) 

can be interpreted as the kink creation operator. Of course, we know that this operator has 

its range outside the space ~AF ' where only the product (5.7) has sense. Nevertheless, this 

formal object is convenient for the construction of the in and out-states for the leading 
vector in the triplet. 

By analogy to the formula (3.36) we consider Zamolodchikov's operator 

-I 
Z~,~(X)= B~,~(kA(X).  (5.9) 

Here the operator Aoo(1) is obtained from AN(X) in the limit as N § ~ after separation of the 
diverging eigenvalue: 

N ~ _ ~  

[see the formula ( 1 . 2 2 ) ] .  The commutation r e l a t i o n ,  s i m i l a r  to (3 .32 ) ,  

4 (5 11) 
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where 

( 5 . t 2 )  

The relations (5.11) follow from (1.14) if we omit in it the second summand on the right- 
hand side. This can be justified after the correct passage to the limit as N § ~. It fol- 
lows from (5.11) that Zamolodchikov's operators satisfy the following permutation relations: 

where 

_7<cx) Z .t~):Z ~s,)Z cx)s. cs,-x), ( 5 . 1 3 )  

. - b q  = z �9 
-,00 

We n o t e  t h a t  u n i i k e  ( 5 . 9 )  and ( 5 , 1 1 )  t h e  p r o d u c t s  i n  ( 5 . 1 3 )  have  s e n s e  in  t h e  s p a c e  , ~ g  . 

To c a l c u l a t e  t h e  i n t e g r a l  i n  ( 5 . 1 4 )  i t  i s  c o n v e n i e n t  t o  d i f f e r e n t i a t e  i t  w i t h  r e s p e c t  t o  X. 
A f t e r  t h a t  i t  i s  r e d u c e d  t o  t h e  i n t e g r a l  

I ~(~) ~ =-~C~CX)*~CX?)~ (5.15) . ~ )+CX-~)~ J- 
-O0 

where we used Eq. (4.45). From (4.46) we have 

-I~'1 -i, X l  
4 & ( e 

�9 ,l+e-if, 
- 0 0  

+ (5.16) 

where ~(z) is the logarithmic derivative of the F-function (see [35]). 

rtT)r(~+#) 

Thus, 

(5.17) 

Similarly to the considerations of Sec. 3 we construct the leading in and out-vector in 
the triplet state in the form 

] ~ t  = Z , ~ ,  (X~ 7__.,t,, (~, ) i ]gF ' (5.19) 

Then i t  fo l lows from (5.13) that  the k ink sca t te r ing  S-matr ix in the t r i p l e t  s tate has the 
form 

S~C x,,x~) = 5~,~ Qx,-x~O; (5.2o) 
this coincides with the result obtained in [12]. 

Unfortunately, the considerations presented above cannot be extended directly to the 
singlet state, since the corresponding operator of creation of the state ~s(X1, X2) from ~AF 
has the form 

and cannot be factorized into two elementary creation operators. 

However, we note that the in and out-states from (3.39) can be presented, up to the 
normalization factor, in the form 
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and 

where kl > %z. 
ready considered; we shall use this consideration for the singlet, setting for %1 > %2 

and 

In the same manner we can act in the case of the triplet (5.18), (5.19) al- 

(5.24) 

Then 

where 

Using (5.11), (5.12), and (5.21) for (I/i)log So(X) we Obtain the expression 

(5.26) 

(5.27) 

(5.28) 

The logarithmic derivative of S0(%) is simplified after applying the integral equation (4.58) 
and we have 

4 ; 
4 ~ ~ ~jC~) = - ~ t ~  = ~ - ~ '  ( 5 .29 )  T a T  

hence, 

s.Ci)= A+~ (5.30) 

Thus, we have calculated S t and S s and we can write the S-matrix (5.1) in the form 

5CX,,X~) = S CI k,-X~l) ,  (5.3~} 

where I and P a r e  the  i d e n t i t y  o p e r a t o r  and the  p e r m u t a t i o n  o p e r a t o r  in  the  space  ~ = |  , 
r e s p e c t i v e l y .  The f o r m u l a  (5 .31 )  i s  c o n s i s t e n t  w i t h  the  g e n e r a l  f o r m u l a  of  f a e t o r i z a b l e  S-  
m a t r i c e s  of  Zamolodch ikov  [31] and of  K a r o v s k i i  e t  a l .  [ 3 6 ] .  I t  i s  c l e a r  t h a t  we would ob -  
t a i n  the  same r e s u l t  u s i n g  K o r e p i n ' s  method [ 3 2 ] .  In  some sense  t h i s  can be c o n s i d e r e d  as 
j u s t i f i c a t i o n  of  the  f o r m u l a s  ( 5 . 1 8 ) ,  (5 .19)  and ( 5 . 2 4 ) ,  ( 5 . 2 5 ) ,  s i n c e  t i l l  now the  o n l y  
j u s t i f i c a t i o n  f o r  them was the  a n a l o g  to the  f e r r o m a g n e t i c  ea se  from See.  3. 

We n o t e  t h a t  we d id  no t  c o n s t r u c t  t he  r e p r e s e n t a t i o n  os the  Zamolodch ikov  a l g e b r a ,  i . e . ,  
we did not find a set of operators Za(~) which satisfy the relations 

l~cx~ E~ c~) = Er c~) E d cx) ~;~ c,-a), (5.3 2) 

where we assume the summation from I to 2 over the repeating indices. However, to calculate 
Sab,bc(%) it was sufficient to represent only the operators of creation of the leading vec- 
tors. 

We note also that the S-matrix constructed above does not have poles in the strip llm • 
%1 < I. This domain plays the role of the physical sheet for our excitations. We can judge 
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it from the expressions for additive observables, e.g., E(%) and K(%), which have as func- 
tions of % the period 2i [this fact follows from (4.49) and (4.50)]. This proves once again 
that spin waves do not have bound states and represent the only elementary excitations in our 
model. 
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