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Abstract

We generalize the grid–projection method for the construction of quasiperiodic tilings.

A rather general fundamental domain of the associated higher dimensional lattice is used

for the construction of the acceptance region. The arbitrariness of the fundamental domain

allows for a choice which obeys all the symmetries of the lattice, which is important for the

construction of tilings with a given non-trivial point group symmetry in Fourier space. As

an illustration, the construction of a 2d quasiperiodic tiling with twelvefold orientational

symmetry is described.

0 Introduction

The interest for non-periodic tilings first arose from problems in mathematical logics (Wang

1965, Robinson 1971). However, since Penrose’s invention of his well known non-periodic

tilings (Penrose 1974, 1979, Gardner 1977), the motivation has changed to the study of geo-

metrical questions related to such tilings. J. Conway (see M. Gardner 1977) and N. G. de Bruijn

(1981) have played a dominant rôle in this field.

We define a tiling as a covering of the plane by translations of a finite number of polygons

with no holes or overlaps. Note however that, depending on the context, other definitions

may be more appropriate, see e. g. Grünbaum & Shepard (1987). Here we are interested in

quasiperiodic tilings. By this we mean:

(i) The tiling is not periodic: There exist no translations (exept the identity) which leave

the tiling unchanged.
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(ii) If we put a δ-function to each vertex of the tiling, the Fourier transform of the resulting

structure is a sum of δ-peaks, whose positions are integer linear combinations of a finite

set of vectors {k1, . . . ,kn}:

F (k) =
∑

ℓ∈Zn

wℓ1,...,ℓnδ(k−
n∑

i=1

ℓiki). (0.1)

(iii) Any finite part of the tiling appears infinitely often in the tiling.

Condition (iii) is often dropped, but the tilings we will consider have this property.

Quasiperiodic tilings may have symmetries in Fourier space which are incompatible with

a periodic structure and do therefore not occur for crystals. A famous example is the Penrose

tiling with fivefold symmetric Fourier transform. This has led physicist’s interest to quasiperi-

odic tilings, since icosahedrally symmetric diffraction patterns of an Al-Mn alloy, observed

by Shechtman et al. (1984), could be explained in terms of a threedimensional version of the

Penrose tiling (Mackay 1981, Duneau & Katz 1985, Elser 1986, Kalugin, Kitaev & Levitov

1986, Levine & Steinhardt 1984). More information on the symmetry of quasiperiodic tilings

and the connection to physics can be found in the Les Houches proceedings (1986).

The main concern of this paper will be a generalization of the grid-projection method

used by various authors (Duneau & Katz 1985, Elser 1986, Gähler & Rhyner 1986, Kalugin,

Kitaev & Levitov 1986, Korepin 1986, Kramer & Neri 1984, Socolar, Steinhardt & Levine

1985). Our algorithm projects part of a n-dimensional lattice Γ in En onto an irrationally

embedded d-dimensional subspace. It is based on a periodic tiling of En by copies of a rather

general fundamental domain of Γ, as opposed to Gähler & Rhyner (1986), who considered

only fundamental parallelotopes. This extension allows for the choice of a fundamental domain

whose closure obeys all the symmetries of the lattice, which is important for the construction

of tilings with specified symmetry in Fourier space. The tilings so obtained are then no more

tilings by parallelotopes alone, but can contain any kind of convex polytopes. These tilings

will not be the final step however. We rather prefer to consider their Voronoi partitionings,

since these seem to have more relevance to physics (Jaric 1986, Henley 1986).

The outline of this paper is as follows. After briefly reviewing the concepts of Voronoi

partitioning and tilings by fundamental domains in sections 1 and 2, we present our generalized

algorithm in section 3. In section 4 we prove that the tilings constructed in section 3 are indeed

quasiperiodic in the sense explained above. Finally, section 5 is devoted to an example to

illustrate these techniques.

1 Tilings by parallelotopes and Voronoi domains

The standard grid-projection method (Gähler & Rhyner 1986) yields tilings of the Euclidean

space Ed by a finite set of parallelotopes. Possible sets of paralellotopes can be obtained as

follows: Let {ti}i=1,...,n be a set of n vectors in Ed (n > d). Any subset of d linearly inde-
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pendent vectors of this set spans a parallelotope (see next section). With the parallelotopes

obtained in this way Ed can be tiled both periodically and quasiperiodically.

It should be noted that the set of vertices of such a tiling is a special case of a De-

launey (r,R)-system (Delauney 1937), which is a point set {vj} in Ed with the following two

properties:

(i) The minimal distance between any two points of the system is r > 0.

(ii) Inside or on the surface of any ball of radius R, no matter where we put its center, there

is at least one point of the system.

With each (r,R)-system we associate its Voronoi partitioning of Ed, which divides Ed into

Voronoi domains, also called Dirichlet or Wigner-Seitz cells. The Voronoi domain associated

with vj is a convex polytope and consists of all points of Ed whose distance to vj is not

larger than the distance to any other point vi 6= vj in the system. Note that according to

this definition a Voronoi domain is a closed set, which means that boundary points belong

to two or more Voronoi domains. An (r,R)-system has in general infinitely many different

Voronoi domains, but a quasicrystal can have only finitely many (up to shifts), see section 3.

A (periodic) lattice has even only one type of Voronoi domain.

The Voronoi domain around a point vj of an (r,R)-system in Ed can be constructed as

follows. Consider the set of all vertices vi inside a closed ball of radius 2R centered at vj .

For each point vi in this set, construct the (d − 1)–dimensional hyperplane perpendicular to

the segment vj − vi and passing through its midpoint 1

2
vi +

1

2
vj . Each of these hyperplanes

cuts Ed into two halfspaces. The Voronoi domain vj is the intersection of all those halfspaces

which contain vj.

2 Fundamental domains of a lattice

Consider a lattice Γ in En generated by n linearly independent vectors e1, . . . , en. A funda-

mental parallelotope Fp of Γ is the set

Fp =
n∑

i=1

λiei, 0 ≤ λi < 1. (2.1)

Since a lattice has infinitely many lattice basis, it has also infinitely many fundamental par-

allelotopes. A fundamental parallelotope is a special case of a fundamental domain F of a

lattice, which is a measurable set with the following two properties:

(i) The translates of F by all lattice vectors of Γ cover En with multiplicity one.

(ii) F contains exactly one point of the lattice.

It should be noted that a fundamental domain is neither closed nor open, only a part of the

boundary belongs to F . In the following we will restrict ourselves to fundamental domains
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whose closure is a convex polytope. Particularly interesting is a fundamental domain whose

closure is the Voronoi domain. From property (ii) it follows that with each fundamental

domain F a unique lattice point γ(F ) is associated. This will become important later.

3 The generalized grid-projection method

Let us decompose the space En containing the lattice Γ into two orthogonal subspaces, En =

E‖ ⊕ E⊥. We will assume in the following that this decomposition is irrational, i. e. neither

E‖ nor E⊥ contain any lattice vectors of Γ. Let F0 be a fundamental domain of Γ, and PΓ(F0)

the partitioning of En into all Γ-translates of F0. The closures of the Γ-translates of F0 will

be called the cells of the partitioning. We assume that the cells are convex polytopes, and

that the partitioning PΓ(F0) is face-to-face, i. e. if two cells have a non-zero intersection, then

this intersection is a (common) face of these two cells. Note that the Voronoi partitioning

is always face-to-face. If a cell is not equal to a Voronoi domain of the lattice, we moreover

assume that the partitoning is generic in the sense that a face of dimension m is contained

in exactly n − m + 1 cells. The dual of such a partitioning is simplicial, i.e. all cells (and

their faces) are simplices. Next, consider an d-dimensional (affine) subspace E of En which

is parallel to E‖. We assume that E is located at a generic position, so that only faces of

dimensions n-d to n-1 of the cells have non-zero intersection with E.

The generalized projection method now is described as follows. The vertices of the tiling

are obtained by projecting orthogonally onto E the set W of lattice points whose associated

fundamental domain has a non-zero intersection with E:

W = {γ(F ) |F ∩ E 6= ∅, F ∈ PΓ(F0)}. (3.1)

Next, we have to divide E into tiles by specifying all their faces of dimensions up to d−1. The

1-dimensional “faces” are obtained by connecting all those vertices by a straight line whose

associated cells share a common face of dimension n− 1 which cuts E. If d = 2, the tiling is

then completely specified. For d > 2 however, the situation is somewhat more complicated.

Those lattice points whose associated cells share a face of dimension k are the corners of a

convex polytope of dimension n − k. For a generic partitioning this is evident, for there are

always exactly n− k + 1 such points. For the Voronoi partitioning, we can argue differently.

The points whose cells share the k-face under consideration can all be connected by a chain

or net of straight lines each of which is perpendicular to an (n− 1)-face containing the k-face

and thus perpendicular to the k-face itself. Therefore, all these points are contained in a

single plane of dimension n− k perpendicular to the k-face. Hence, in both the Voronoi and

the generic case we can build the (n− k)-dimensional polytope dual to a given k-face. If now

the k-face cuts E, we project its dual polytope to E. In this way we obtain a prescription

for the subdivision of E into tiles. Note that with each projected dual of a k-face also all

its boundaries are projected, since the k-face is contained in the corresponding (k + 1)-faces

which cut E too.
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The same tiling can also be obtained as the dual of a grid G. This grid is given by the

intersection of the union of the boundaries of all cells of the partitioning with the subspace

E. The grid divides E into convex polyhedral cells, called meshes, the faces of which are the

intersections of E with the (n−1)-dimensional faces of the cells of the partitioning. Each mesh

of the grid corresponds to a cell which cuts E. Therefore, with each mesh we can associate the

projection of the corresponding lattice point, and two lattice points belonging to meshes with

a common (d − 1)-face have to be connected by the projection of the corresponding lattice

vector connecting the two lattice points. The vertices associated with the meshes sharing a

common k-face will become the corners of a (d − k)-face of a tile (these vertices are indeed

contained in a (d− k)-plane as explained in the previous paragraph). In this way we see that

the tiling obtained previously by projection can be reconstructed from the grid. According

to this construction, it is the dual graph of the grid.

What is not immediately clear is whether there will be overlapping tiles, i. e. whether the

tiling is folded. Whether there are additional conditions required to avoid overlapping, and

what these conditions would be, we leave as an open problem. For the Voronoi case however

we have some (numerical) evidence that overlapping does not occur, and we conjecture that

this is generally true for the Voronoi case. For the classical grid method, the necessary and

sufficient non-overlapping conditions have been determined (Gähler & Rhyner 1986, de Bruijn

1986).

From the grid picture and from the periodicity of Γ it follows that the tiling consists

only of a finite number of different tiles (up to translation), for there are only finitely many

inequivalent (n− d)-faces of the cells of the partitioning which can cut E (note that the type

of such an (n− d)-face determines which vertices belong to the associated cell). By a similar

reasoning one finds that there are only finitely many arrangements of cells which share a

common vertex, so that the Voronoi partitioning of the tiling, as constructed in section 1,

consists of a finite number of different cells too. Bounds on the number of different patches

of radius R of such a quasiperiodic tiling have been obtained by Gähler (1986). This number

is finite and can grow only with a fixed power of R.

Let us compare our construction briefly with the algorithm proposed by Gähler & Rhyner

(1986). They consider only special fundamental domains, namely parallelotopes. This has

the disadvantage that for non-orthogonal lattices it is impossible to choose a parallelotope

which is invariant under the whole point group of the lattice Γ. The choice of a symmetric

fundamental domain is essential for the construction of quasiperiodic tilings which have the

corresponding symmetry in Fourier space. By allowing a more general fundamental domain,

e. g. the Voronoi domain, this deficiency is removed. This additional freedom is the main

difference as compared to Gähler & Rhyner (1986). Using different “grid-” and “tiling-spaces”

or including a subsequent linear transformation applied to the tiling could of course also be

incorporated into the present algorithm.
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4 Proof of quasiperiodicity

In this section we demonstrate that the tilings constructed in the last section satisfy the three

conditions for quasiperiodicity formulated in the introduction. Since the proof of condition

(ii) is a standard one (see e. g. Gähler & Rhyner 1986, Zia & Dallas 1985), we restrict ourselves

to conditions (i) and (iii).

First we prove non-periodicity. Let us define the projectors P ‖ and P⊥ projecting orthog-

onally onto E‖ and E⊥ respectively. Further, define the strip S as

S = {m+ e |m ∈ M, e ∈ E‖}, (4.1)

where the acceptance region M is the projection P⊥F onto E⊥, with F a translate of F0

centered at E. Then, we can write the set W defined in (3.1) as W = Γ ∩ S. Clearly,

the projection of W onto E‖, W ‖ = P ‖W , is the set of vertices of the tiling. Due to the

irrationality of the embedding of E‖ and E⊥, the sets P ‖Γ and P⊥Γ are dense in E‖ and E⊥,

and there is a one-to-one correspondence between Γ, P ‖Γ and P⊥Γ, as well as between W , W ‖

and W⊥ = P⊥W . Suppose that W ‖ is periodic, i. e. W ‖ is invariant under a translation γ‖.

Then γ‖ maps vertices to vertices and is therefore the projection of a lattice vector γ. Hence,

W ‖ is as well the projection of the set W + γ. Since there is a one-to-one correspondence

between W and W ‖ this means that W = W + γ. Let us project this equation to E⊥:

W⊥ = W⊥ +P⊥γ. Since the closure of W⊥ is compact, this means that P⊥γ = 0 or γ ∈ E‖,

which contradicts our assumption of an irrational embedding of E‖. Therefore the tiling is

non-periodic.

Now we show that every finite part W ‖

f ⊂ W ‖ has infinitely many copies in W ‖. Denote

by Wf the unique subset of W such that W ‖

f = P ‖Wf , and by W⊥
f its projection to E⊥.

Since E is at a generic position, no lattice points are projected onto the boundary of M , and

so W⊥
f is in the interior of M . Let ∆ be the distance of W⊥

f to the boundary of M ,

∆ = min
x∈W⊥

f

y∈∂M

(|x− y|). (4.2)

For every lattice vector γ whose projection onto E⊥ is inside an open ball of radius ∆, we

have that the finite set W̃f = Wf + γ ⊂ Γ projects into M , P⊥W̃f ⊂ M , and therefore

belongs to the strip S. This means that a translation by P ‖γ maps W ‖

f onto an equivalent

set. Since P⊥Γ is dense in E⊥, there are infinitely many such lattice vectors, and so the proof

is completed.

5 Example: a dodecagonal tiling

As an application, we discuss the construction of a class of twodimensional tilings with twelve-

fold symmetric Fourier spectrum. These tilings have first been constructed by Stampfli (1986)
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by means of a grid. They might be relevant for the description of quasicrystalline Ni-Cr (Ishi-

masa, Nissen & Fukano 1985, Gähler 1987). More details about these and related tilings can

be found in Gähler (1987).

The relevant lattice for our case is the diisohexagonal orthogonal primitive lattice (Brown

et al. 1978) in four dimensions, denoted by Γ. This lattice has a point symmetry group which

contains the subgroup D24. The latter is the relevant symmetry group for our purposes. The

lattice Γ is easily constructed as follows. Let us decompose E4 into two orthogonal subspaces,

E4 = E‖ ⊕ E⊥. E‖ is the space onto which we will project. Let {e1, . . . , e12} be a star of

twelve vectors in E4 such that their projections onto E‖ and E⊥ are given by

e
‖

i = (cos(π(i − 1)/6), sin(π(i− 1)/6))

e⊥i = (cos(5π(i − 1)/6), sin(5π(i − 1)/6))
(5.1)

with respect to Euclidean coordinates in E‖ and E⊥. The vectors {e5, . . . , e12} can be ex-

pressed as integer linear combinations of the remaining four vectors, and since {e1, . . . , e4}

are rationally independent, the set {e1, . . . , e12} generates a 4-dimensional lattice which will

be identified with Γ.

In this example, we choose a fundamental domain whose closure is the Voronoi domain.

Therefore we have to construct the Voronoi partitioning of Γ. We note that the space spanned

by e1 and e3, denoted by Ea, is orthogonal to the space Eb spanned by e2 and e4. The

vectors e1 and e3 generate a 2d regular hexagonal lattice Γa in Ea, and e2 and e4 generate a

corresponding lattice Γb in Eb. Therefore, Γ is given as an orthogonal sum of two 2d regular

hexagonal lattices,

Γ = Γa ⊕ Γb. (5.2)

Next we recall the fact that in such a case the Voronoi domain of Γ is given by the topological

product of the two Voronoi domains of Γa and Γb,

V = V a × V b, (5.3)

which of course are regular hexagons. Let Ha and Hb be the hexagon nets given by the

boundaries of all Voronoi domains of Γa and Γb respectively. Then the union of the boundaries

of all Voronoi domains of Γ is given by

N = (Ha ×Eb) ∪ (Ea ×Hb), (5.4)

i. e. N is the union of two orthogonal arrays of hexagonal “tubes”. Let E be a generic

plane parallel to E‖. The grid, i. e. the intersection of N with E, is then the union of the

intersections of the two arrays of tubes, which are both regular hexagon nets, turned with

respect to each other by 30◦ (see Fig. 1). The elementary hexagons of these nets are by a

factor of two larger than the projections of the Voronoi domains of the hexagonal lattices.

The relative positions of the two nets are determined by the position of E.

For the construction of Stampfli’s tilings, the two algorithms discussed in section 3 now

read as follows:
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Fig. 1: Grid given by two hexagon nets Fig. 2: Quasiperiodic tiling dual to grid of Fig. 1

A: Projection construction

Project the center of all those Voronoi domains of Γ onto E‖ which cut E. Connect all

those points by a straight line whose Voronoi domains have a face in common which

cuts E.

B: Grid construction

With each mesh of the grid N ∩E, associate a vertex of the tiling. If the meshes of two

vertices have a common face, these vertices are connected by a line of unit length which

is perpendicular to this face. This is Stampfli’s presciption.

A tiling constructed in this way is shown in Fig. 2.

Let us finally note that this is a particularly simple example, due to the fact that Γ is an

orthogonal sum of two 2d lattices. From this it follows that the grid N ∩E is the union of two

simple periodic grids. In the general case, N ∩E would be very complicated, but nevertheless

all our constructions would go through as well.
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