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The quantum inverse scattering method is used to study a non-Abelian Toda chain. 
The quantum R-matrix describing the commutation relations between the elements of 
the monodromy matrix of the corresponding auxiliary linear problem is computed. 

Introduction 

A non-Abelian Toda chain is a one-dimensional evolution model on a lattice with N nodes. 
The model's Lagrangian is 

N 

k=4 

This model was suggested by A. M. Polyakov as the discrete analog of the principal chiral 
field. Model (I) is a generalization of the Abelian Toda chain [I]. The models mentioned 
are completely integrable. The equations of the principal chiral field were solved in [2]. 
The Abelian Toda chain was investigated in [3-6]. The conservation laws for the non-Abelian 
Toda chain were found by Polyakov and the Lax representation for the equations of motion were 
found by Manakov [7]. An interesting investigation of model (I) was carried out in [8, 9]. 

In the present paper we examine an approach to the quantization of model (I) with the 
aid of the quantum inverse scattering method [10]. Let us describe the paper's contents: 
in Sec. I we compute the classical r-matrix and in Sec. 2 we compute the quantum R-matrix. 

I .  Classical Model 

We state the properties of model (I) in a form convenient for quantization. 
tions of model (I) can be presented as: 

A~= ]~-]~k-~ , ~=,4~,l~k-R~/~ �9 
For example, we consider the periodic boundary conditions 

Equations (2) can be written as compatibility conditions: 

The equa- 

e 

H e r e  @k i s  a 2 n - c o m p o n e n t  c o l u m n  v e c t o r  a n d  L k a n d  N k a r e  2n x 2 n - m a t r i c e s  w h i c h  we p r e s e n t  
i n  b l o c k  f o r m :  

~-A.,-B~-t / 

! , o . '  

Mk(~) = 

0 ~ - ~k-~ 

I, A~_I- ~ 

LK(~)= 

(2) 

(3) 

(4) 

(5) 
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The compatibility condition in Eqs. (4) must be fulfilled identically in ~. We note that in 
the continuous limit model (I) turns into a principal chiral field; by formal calculations we 
can show that the L--M pair of (5) turns into the Zakharov--Mikhailov L--M pair [2]. The mono- 
dromy matrix 

T~},~ = L N (~ ) . . . . .  b~ (,~) (6) 

plays an important role in the inverse scattering method. The trace of the monodromy matrix 
is independent of time. The coefficients in the expansion of In tr T(k) in powers of X prove 
to be local conservation laws among which is contained the Hamiltonian model. In what fol- 
lows it happens to be convenient to make a "gauge" transformation, i.e., to replace the wave 
function in Eq. (4) : 

T,  0 

0 ,  ~,~_,~. 
(7) 

This leads to the replacement of operator L k by Lk: 

.Lk= ~t h.Q, L, = R-H s , o 

(8) 

The new operator Lk is local, i.e., depends only on the variables at the k-th node. The new 
monodromy matrix 

T(~)=bNob . . . . .  ~(~) (9) 
is connected with the original one by the formula 

Tr (T~T(A~Q, Q=Q4= 
1 , 0  

O, ~'N 
io) 

The Poisson brackets between the elements of the monodromy matrix play an important role. 
Usually they permit us to compute the action-angle variables. We present the Hamiltonian 
formulation of the model : 

N 
4 

K=~ 

"K,"s  ~ ~ 1 1) 

It is convenient to make use of the symbol for the direct product of matrices: 

with whose help the Poisson brackets of elements Cac and Dbd of matrices C and D can be writ- 
ten as 

[ CO,~, ,i~gd, } ~-- [ C. ~, ~}a6,r.,& " (13)  

In notation (12) the matrix product is written thus: 

( N'M).&,c, i  ---- I ]  Na~,K r Mk~,cd, �9 (14)  
ks 
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Using such a notation, we can write formulas (11) as 

(~5) 

Here z is a permutation matrix of dimension n 2 • n 2. It is defined thus: 

We p r e s e n t  i t s  most i m p o r t a n t  p r o p e r t i e s :  

Here C and D are arbitrary numerical n x n-matrices. Now all has been prepared for us to 
compute the Poisson brackets between the elements of the monodromy matrix (9). We do this 
by using the classical r-matrix method [11]. We remark that if we succeed in representing 
the Poisson brackets between the elements of L(I) of (8) in the form 

(16)  

(17) 

then the Poisson brackets between the elements of T(X) are given by the same formula (see 
Appendix I) : 

In these formulas the brackets on the right-hand side signify the matrix commutator of two 
matrices of dimension 4n 2 x 4n 2. The quantity r(l, ~) is the classical r-matrix and its ele- 
ments depend only on I and ~. A direct calculation with the aid of (15) (see Appendix 2) 
shows that the r from (18) exists and is given by the expression 

%(~,~) ~--- ( A-~ )-4i) �9 (20) 

Here P is a permutation matrix of dimension 4n 2 x 4n2: 

p = 

qT 

(21)  

Thus, formulas (19) and (20) give the desired Poisson brackets between all elements of the 
monodromy matrix T(1) of (9). This completes the formulation of the properties of the clas- 
sical model (I). 

2. Quantum Model 

In the quantum version the model is specified by the Hamiltonian 

N 

Here A and g are n x n-matrices whose elements are quantum operators; their commutation rela- 
tions have the form 

k f, = " ~  k" ~ ck' "~ n~ 7k" when k=#~ , 
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C<i 
.-I, ad~ag 

~'k" ) ' 

Using the tensor product symbol, these relations can be rewritten as 

23) 

24) 

It should be noted that formulas (2)-(10) are true also in the quantum case. An important 
role in the inverse scattering method is played by the permutation relations of the elements 
of T(1). In certain models such permutation relations enable us to compute all the eigen- 
functions of the quantum Hamiltonian model. Let us compute the mentioned commutation rela- 
tions with the aid of the tricks worked out in the quantum inverse scattering method [10]. 
If we manage to represent the commutation relations between the elements of I~(1) in the form 

then the permutation relations of the elements of T(Z) are given by the same formula: 

Here R(Z, ~) is a numerical matrix of dimension 4n 2 x 4n 2 whose elements depend only on l 
and ~. The transition from (25) to (26) is based on the localness of operator Lk(l). Direct 
calculation by use of (24) (see Appendix 2) shows that 

Here E is the unit 4n 2 x 4n2-matrix. We remark that the R-matrix for the Abelian Toda chain 
was found by Manakov. Expression (27) is the R-matrix for other models as well [12]. 

Using these results we can compute the commutation relations between the elements of the 
original nonlocal monodromy matrix T(I) of (6). For this it is convenient to substitute for- 
mula (10) 

into (26). Only the first factor L N in T(Z) does not commute with Q in (28) (as a quantum 
operator). This enables us to write the commutation relations as: (see Appendix 3) 

g (A,#) (E-~,~X)(T(~) @I)(E-~,kY)(I | =(E-*g X)(T(#) el) (E-{gY) (i e T(~)) gc1,j~). (29) 

Here R is given by formula (27) and X and Y are numerical 4n 2 x 4n2-matrices. (We present 
them in block form (n 2 x n 2 blocks): 

= y = (30) 

Formulas (26), (27), (29), (30) are the main result. We have computed all the commutation 
relations between the elements of the monodromy matrix. We remark that these commutation 
relations turn out to be useful in the quantization ~(x) of the field. 

I wish to thank L. D. Faddeev and S. V. Manakov for attention to the work and for useful 
discussions, as well as P. P. Kulish for useful remarks, 
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Appendix I 

The operators s of (8) are independent at the different nodes: 

Using this equality, it is easy to show that from (18) follows 

It is obvious that we arrive at (19) by continuing this argument. 

Appendix 2 

To compute the r-matrix in (18) and the R-matrix in (25) it is convenient to use the 
following notation. The operator L of (8) has been written in the block form 

Here Lik is an n • n-matrix. The tensor product s @ s has the form 

f f 

f 

L,f~o L, m 

In this basis the permutation matrix P(4n 2 x 4n 2) has the form 

j~ = 
r 

(31) 

(32) 

(33) 

(34) 

(35) 

Appendix 3 

We go on to compute the commutation relations between the elements of T(X) of (6) 

We substitute this formula into (26): 

P~ ~A, ~)(Q'~T(A~ Q) r (O-~T(~) 0 )= (Q-~T(/~) Q) @(Q-'T(A) Q) ~c~,~) . 

(36) 

(37) 
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We take advantage of the fact that the R of (27) commutes with Q @ Q and we multiply (37) 
by Q @ Q from the left and by Q-l | Q-i from the right. We obtain the following equality: 

B (I | Q )((T(A) Q ) e(Q-IT(ff))) (Q'le I ) = (I e Q ) ((T(~) Q)o(T'T(A)))(r174 ) R. (38) 

Using the commutativity of matrices Q | I and I @ Q-I, we obtain 

R[(I| Q)(T(A) mI)(I e Q")]. [(QeI)( I  | T(,))(Q-'e I )] : 

=[(I| Q)(T(j~)el)(T | Q-~)].[(Qe I)(I| B. (39) 

We transform the expression (I~Q)(Td)~I)(le T'; For this we note that the matrix elements 
Q do not commute only with the matrix elements of L N. Consequently, 

(1 e Q)(T(A; |  | = ( I  e Q)(I,N(A)eI) ( / e  Q'~) 

We note that 

( l,N_ ~ (A)....' b~cA)eI ). 

Direct computations lead to the equality 

(I| Q)(LN(A3 e l ) ( l  e ~)=(  E - ~  X)(L~d)eZ). 
The final expression for (I|174 Q'f) is 

(I | Q)(T(A)el)(l | Q-e) = ( E-~X )(T(A) ~ I) 

P(I| Q )(T(A)el)(l e ~'~)P = (Q |  eT(A))(Q'~I). 
Substituting (42) and (43) into (39), we obtain (29). 

(40) 

(41) 

(42) 

(43) 
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