
Today 10/21:

1. HW5 due 11:59pm Nov. 1st (selection of presentation topics, and 
exercises on surface code and Ising anyon gates)

2. Today: Quantum computing by measurement
(a.k.a. Measurement-based quantum computation)

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



(Frameworks of) Quantum Computation 

II. Adiabatic:

III. Topological:

IV. Measurement
-based:

quantum gates = braiding anyons

I. Circuit: 0/1

0/1

0
0
0
0

 Major scheme by most
labs: IBM, Intel Rigetti,
IonQ, Alibaba

 Approach by Microsoft,
Google uses a hybrid of III and I 
(circuit version of IV)

 Approach by D-Wave

local measurement is the only 
operation needed

 Used in photonic systems, 
such as PsiQuantum
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QC by Local Measurement---an overview picture
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 There is a highly entangled state on a 2D array 
of qubits. First carve out entanglement structure on 
cluster state by local Pauli Z measurement
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(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement near & on each bridge simulates two-qubit gate (CNOT)

2D or higher dimensions are needed for universal QC

 Then:

[Raussendorf & Brigel ‘01]



Unitary operation by measurement?
 Intuition: entanglement as resource!

 Controlled-Z (CZ) gate from Ising interaction

1 2

 Entanglement is generated:



Unitary operation by measurement?
 Intuition: entanglement as resource!

 Measurement on 1st qubit in basis

with outcome denoted by

1 2

measurement

CZ
CZ

 Second qubit becomes

 A unitary gate is induced:

≡ ≡

X Y



Saw this before (on 9/2): A variant---gate teleportation*
Controlled-Z gate and single-qubit measurement induces rotation

1

2

ξ + or -

≡ ≡

X Y

The measurement basis ξ is defined via or the observable:



1

2

ξ + or -
The measurement basis ξ is defined via

Saw this before (on 9/2): Derivation*



Simulating arbitrary one-qubit gates
 In terms of circuit:

1

2

ξ + or -

 Can cascade this a few times:

1

2

ξ1
+ or -

ξ2

3 ξ3

4 ξ4

5

[Raussendorf &Wei, Ann Rev Cond-Mat ‘12]

Entangled state 
(resource prepared 
in advance)



Arbitrary one-qubit gate

 Consider: ξ1=0 & construct 
arbitrary rotation

 Propagating Z’s to left and use HZH=X:



Realizing arbitrary rotation

 Take

we realize an Euler rotation:

 Note: measurement basis can depend on prior results

 can be absorbed by modifying later measurement basis

1

2

ξ1
+ or -

ξ2

3 ξ3

4 ξ4

5



Linear cluster state: resource for simulating 
arbitrary one-qubit gates

1

2

ξ1
+ or -

ξ2

3 ξ3

4 ξ4

5

 May as well take |in>=|+>;    the whole state before measurement ξ’s 
is a highly entangled state  1D cluster state



1D Cluster state: simulate 1-qubit gate

1

2

3

4

5

n

 Local measurement induces discrete 
evolution of quantum state (one qubit)

 Cluster/graph states: on any graph:



Working out cluster states



Graph states and the stabilizer group

 Cluster state: special case of general “graph” states

X

ZZ

Z

 Uniquely define the state G, also via Hamiltonian

(can show this, using
above def. of G)

=
Recall:



Example of graph Hamiltonians



Simulating CNOT by measurement

 Consider initial state

If outcome=++: an effective CNOT applied:

2 3

1

4

Can show:

 Measurement on 2nd and 3rd qubits in basis

 Note the action of CZ gates can be pushed up front
(a 4-qubit “cluster” state can be used to simulating CNOT) 



CNOT: Other implementations

with measurement pattern:

control in control out

target in target out

21 3 4 6 75

8

109 11 12 14 1513

1.
control in

target in

control out

target out

2.



Z measurement on graph state
 The effect is just to remove the measured qubit, keeping the remaining 

entanglement structure

a

 Graph after Z measurement on qubit a:

a1

2

3

4

 If outcome =0:

 If outcome =1:



Measurement-based QC: cluster state
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 Carve out entanglement structure 
by local Z measurement Z
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(1) Each wire simulates one-qubit evolution (gates)

(2) Each bridge simulates two-qubit gate (CNOT)

2D or higher dimension is needed for universal QC &
Graph connectivity is essential (percolation)

[Raussendorf & Briegel PRL 01’]



2D cluster state is a resource for quantum 
computation

 Whole entangled state is created first 
(by whatever means)

 Pattern of measurement gives computation
(entanglement is being consumed  one-way)

 Operations needed for universal QC are 
single-qubit measurements only

 Elementary “Lego
pieces” for QC:



Realizations of cluster states

 J-W Pan’s group: 4-photon 6 qubit and CNOT (PRL 2010)

 Bloch’s group: controlled collision in cold atoms (Nature 2003)



Linear optic QC & cluster state
 Linear optic universal QC possible with single photon source, 

linear optic elements (beam splitters, mirrors, etc) & photon counting
[Knill, Laflamme & Milburn ’01] High overhead in entangling gates

 Cluster state helps reduce this overhead [Yoran & Reznik ’03; Nielsen ‘04; 
Browen & Ruldoph ’05;
Kieling, Rudolph &Eisert ‘07] Grow cluster states efficiently

 Experimental prospect: see e.g. [O’Brien, Science ’07]



Other universal states*

 Can they be unique ground state with 2-body 
Hamiltonians with a finite gap?

 So far no complete characterization for resource states

 If so, create resources by cooling!

 Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT ’87, ‘88]

 Symmetry-protected topological states

[Gross et al. ‘07, ‘10] [Brennen & Miyake ’08?]1D (not universal):

2D (universal): [Wei, Affleck & Raussendorf ‘11] [Miyake ‘11] [Wei et al. ‘13-’15]

[Else, Doherty & Bartlett ’12]
[Stephen et al. ‘17]

[Miller & Miyake ’15]1D (not universal): [Prakash & Wei ’15]

2D (universal, not much explored):
[Poulsen Nautrup & Wei ’15, Miller & Miyake ’15,
Chen, Prakash & Wei ’18, Raussendorf et al. ‘18]

 Unique ground states of two-body interacting Hamiltonians



How do we make MBQC fault tolerant?
 Key idea: use 3-dimensional cluster state and measurement

pattern simulates braiding

 2d Surface code: 1. Physical qubit on edge

2. Most plaquettes and vertices (stars)

= 1 =

is enforced in code space

3. When a pair of plaquettes (or stars) not enforced, 
it gives rise to a logical qubit (see above and logical X and Z operators)

 Braiding gives topologically protected logical operations

 But not universal, requires magic state injection to logical qubit (see 
above and logical X and Z operators)



Surface code QC 
 Example: 2 logical qubits (one primal and one dual)

 CNOT gates (between primal and dual; between two primal logical qubits)
 simplest to implement

primal defects

dual defects



Fault-tolerant MBQC
 Key idea: use 3-dimensional cluster state and measurement

pattern simulates braiding

 The diagrams literally translate to measurement pattern 
(replace time direction by the third dimension)

 Gives a high error threshold: 
0.75%

 The 3d cluster state is given by a lattice with the following unit cell:

 2d circuit version is what Google plans to use



Fault tolerant cluster-state QC
 Uses a 3d cluster state and implements surface codes in each 

2d layer

 Error threshold 0.75%, qubit loss threshold 24.9% 

 Uses magic-state distillation 
to achieve non-Clifford gate
(by measurement)

[Raussendorf, Harrington & 
Goyal ’07] 

[Barrett & Stace ‘10] 

 CNOT is achievable
by measurement



One application of measurement-based QC

Suppose we have a cloud quantum computer server. 

Q: Is it possible to run on this cloud quantum computer 
without the server figuring out what the client is 
actually running?

A: Blind quantum computation 


