Introduction to measurementbased quantum computation

Tzu-Chieh Wei (魏子傑) C.N. Yang Institute for Theoretical Physics Department of Physics & Astronomy

Tutorial #2, August 28, AQIS 2016

Supported by

Goals of this tutorial*

- Give some details to understand basic ingredients of measurement-based quantum computation (MBQC)
- Give pointers to related development/ application (fewer details)

□ Will point out related talks in this conference

Give some open problems

*This tutorial assumes little prior knowledge

Review papers

H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf & M. Van den Nest, "<u>Measurement-based quantum computation</u>" Nat. Phys. **5**, 19 (2009)

R. Raussendorf &T-C Wei, "Quantum computation by local measurement", <u>Annual Review of Condensed Matter</u> <u>Physics</u>, 3, 239 (2012)

L.C. Kwek, Z.H. Wei & Bei Zeng. "<u>Measurement-Based</u> <u>Quantum Computing with Valence-Bond-Solids</u>", Int. J. Mod. Phys. B 26, 123002 (2012)

Moore's Law:

The number of transistors on a chip doubles ~every 2 years

→ A transistor hits the size of a few atoms in about 20 years
→ Quantum regime is inevitable

Candidate systems* for quantum computers

*You may see many of these throughout this conference

New quantum Moore's Law?

Number of qubits in ion trap

 Roughly doubles every 6 years! (may depend on physical systems)
 e.g. see Nathan Langford's tutorial on circuit QED

ENIAC – first generation computer

Contained: 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors 5 million hand-soldered joints

Weighed 27 tons About 8.5 by 3 by 100 feet Took up 1800 square feet

20 ten-digit signed accumulators

When will the first-generation quantum computer appear?

Quantum computation in a nutshell

 \Box Consider a function *f* and a corresponding unitary *U*:

 $U_f: |k\rangle \otimes |0\rangle \longrightarrow |k\rangle \otimes |f(k)\rangle$

Exploit quantum parallelism:

$$\left(\sum_{k=0}^{2^{n}-1} |k\rangle\right) \otimes |0\rangle \xrightarrow{U_{f}} \sum_{k=0}^{2^{n}-1} |k\rangle \otimes |f(k)\rangle -$$

- Naive measurement only gives one f(k) at a time
 - Good design of measurement may reveal properties of *f* → e.g. Shor's factoring algorithm

□ Factoring is hard:

180708208868740480595165616440590556627810251676940134917012702 1450056662540244048387341127590812303371781887966563182013214880 557 =(????...?) x (????...?)

=(39685999459597454290161126162883786067576449112810064832555157243) x (45534498646735972188403686897274408864356301263205069600999044599)

Quantum computation: Circuit model

CNOT & CZ gates

CNOT: $\text{CNOT} = |0\rangle_c \langle 0| \otimes I_t + |1\rangle_c \langle 1| \otimes X_t$

CZ:

$$CZ = |0\rangle_c \langle 0| \otimes I_t + |1\rangle_c \langle 1| \otimes Z_t$$

(Models of) Quantum Computation

Outline

I. Introduction

- II. One-way cluster-state (or measurement-based) quantum computers
- III. Other entangled resource states: Affleck-Kennedy -Lieb-Tasaki (AKLT) family

IV. Summary

Now focus on measurement-based (or one-way) quantum computer:

which can "simulate" unitary evolution

Unitary operation by measurement?

□ Intuition: entanglement as resource!

✤ Controlled-Z (CZ) gate from Ising interaction

$$CZ_{12} = e^{-i\frac{\pi}{4}(1-\sigma_Z^{(1)})(1-\sigma_Z^{(2)})} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Set Entanglement is generated:

$$\begin{array}{c} CZ\\ (a|0\rangle + b|1\rangle) \left|+\right\rangle & \longrightarrow & |\psi\rangle = a|0\rangle |+\rangle + b|1\rangle |-\rangle \end{array}$$

Unitary operation by measurement?

Intuition: entanglement as resource!

 $(a|0\rangle + b|1\rangle)|+\rangle \xrightarrow{\mathsf{CZ}} |\psi\rangle = a|0\rangle|+\rangle + b|1\rangle|-\rangle$

* Measurement on 1st qubit in basis $|\pm \xi\rangle = (e^{-i\xi/2}|0\rangle \pm e^{i\xi/2}|1\rangle)/\sqrt{2}$ with outcome denoted by $\pm = (-1)^s$

measurement

$\cos(\xi)\sigma_x +$	$\sin(\xi)\sigma_y$
111	III
X	Y

➔ Second qubit becomes

 $_{1}\langle \pm \xi | \psi \rangle_{12} \sim a \, e^{i\xi/2} | + \rangle_{2} \pm b \, e^{-i\xi/2} | - \rangle_{2} = H \, e^{i\xi Z/2} Z^{s}(a|0\rangle_{2} + b|1\rangle_{2})$

→ A unitary gate is induced: $U(\xi, s) \equiv H e^{i\xi Z/2} Z^s$

$$Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Simulating arbitrary one-qubit gates

□ In terms of circuit:

[Raussendorf & Wei, Ann Rev Cond-Mat '12]

Can cascade this a few times:

$$|\mathrm{in}\rangle = (a|0\rangle + b|1\rangle)_{1} + \mathrm{or} - |+\rangle_{2} + \mathrm{or} - |+\rangle_{3} + CZ + \xi_{3} - U_{1}(\{\xi\}) = \prod_{i=4}^{1} U(\xi_{i}, s_{i}) + |+\rangle_{4} + CZ + \xi_{4} + |+\rangle_{5} + U_{1}(\{\xi\})|\mathrm{in}\rangle$$

Example: arbitrary one-qubit gate

 $U_1(\{\xi\}) = \prod_{i=4}^1 U(\xi_i, s_i) \qquad U(\xi, s) = H e^{i\xi Z/2} Z^s$

□ Consider: $\xi_1 = 0$ & construct arbitrary rotation

$$U_1(\{\xi\}) = \left(He^{i\xi_4 Z/2} Z^{s_4}\right) \left(He^{i\xi_3 Z/2} Z^{s_3}\right) \left(He^{i\xi_2 Z/2} Z^{s_2}\right) \left(HZ^{s_1}\right)$$

 \Box Propagating Z's to left and use HZH=X:

$$U_1(\{\xi\},\{s\}) = Z^{s_1+s_3} X^{s_2+s_4} e^{i(-1)^{s_1+s_3}\xi_4 X/2} e^{i(-1)^{s_2}\xi_3 Z/2} e^{i(-1)^{s_1}\xi_2 X/2}$$

□ Take $\xi_2 = -(-1)^{s_1}\gamma, \ \xi_3 = -(-1)^{s_2}\beta, \ \xi_4 = -(-1)^{s_1+s_3}\alpha$

we realize an Euler rotation, up to byproduct Z, X operators:

$$U_1(\{\xi\},\{s\}) = Z^{s_1+s_3} X^{s_2+s_4} e^{-i\alpha X/2} e^{-i\beta Z/2} e^{-i\gamma X/2}$$

Comments

☐ Take
$$\xi_2 = -(-1)^{s_1}\gamma$$
, $\xi_3 = -(-1)^{s_2}\beta$, $\xi_4 = -(-1)^{s_1+s_3}\alpha$
we realize an Euler rotation, up to byproduct Z, X operators
 $U_1(\{\xi\}, \{s\}) = Z^{s_1+s_3}X^{s_2+s_4}e^{-i\alpha X/2}e^{-i\beta Z/2}e^{-i\gamma X/2}$

→ Note: measurement basis can depend on prior results

- → Byproduct operators $Z^{s_1+s_3}X^{s_2+s_4}$ can be absorbed by modifying later measurement basis
- ➔ Byproduct operators on final measurement in Z basis (readout) can be easily taken into account (only X flips 0/1)

Linear cluster state: resource for simulating arbitrary one-qubit gates

May as well take $|in\rangle = |+\rangle$ the whole state before measurement ξ's is a highly entangled state \rightarrow 1D cluster state

Simulating CNOT by measurement

Consider initial state

$$(a|0\rangle + b|1\rangle)_1 (c|0\rangle + d|1\rangle)_2 |+\rangle_3 |+\rangle_4$$

$$\xrightarrow{CZ_{23} CZ_{13} CZ_{34}} |\psi\rangle_{1234}$$

- $$\begin{split} |\psi\rangle_{1234} &= |0\rangle_3 \big(a|0\rangle_1 + b|1\rangle_1\big) \big(c|0\rangle_2 + d|1\rangle_2\big)|+\rangle_4 \\ &+ |1\rangle_3 \big(a|0\rangle_1 b|1\rangle_1\big) \big(c|0\rangle_2 d|1\rangle_2\big)|-\rangle_4 \end{split}$$
- Measurement on 2nd and 3rd qubits in basis $|\pm\rangle \equiv (|0\rangle \pm |1\rangle)/\sqrt{2}$

If outcome=++: an effective CNOT applied:

 $|\psi\rangle_{14} = {}_{23}\langle + + |\psi\rangle_{1234} \sim \text{CNOT}_{14}(a|0\rangle_1 + b|1\rangle_1)(c|0\rangle_4 + d|1\rangle_4)$

Can show: $|\psi_{\text{out}}\rangle \sim Z_1^{s_2} X_4^{s_3} Z_4^{s_2} \text{CNOT}_{14} |\text{in}\rangle_{14}$

 Note the action of CZ gates can be pushed up front (a 4-qubit "cluster" state can be used to simulating CNOT)

CNOT gate: symmetric design

[Raussendorf & Briegel PRL 01']

→ The following measurement pattern simulates CNOT gate (via entanglement between wires)

Q: how do I know it implements CNOT? byproduct operators=?

Ans: see Theorem I in Raussendorf, Browne & Briegel PRA '03 (generalization to qudit: Zhou et al. PRA '03)

Theorem 1. Let $C(g) = C_I(g) \cup C_M(g) \cup C_O(g)$ with $C_I(g) \cap C_M(g) = C_I(g) \cap C_O(g) = C_M(g) \cap C_O(g) = \emptyset$ be a cluster for the simulation of a gate g, realizing the unitary transformation U, and $|\phi\rangle_{\mathcal{C}(g)}$ the cluster state on the cluster C(g).

Suppose the state $|\psi\rangle_{\mathcal{C}(g)} = P_{\{s\}}^{(\mathcal{C}_M(g))}(\mathcal{M}) |\phi\rangle_{\mathcal{C}(g)}$ obeys the 2*n* eigenvalue equations

$$\sigma_{x}^{(\mathcal{C}_{I}(g),i)}(U\sigma_{x}^{(i)}U^{\dagger})^{(\mathcal{C}_{O}(g))}|\psi\rangle_{\mathcal{C}(g)} = (-1)^{\lambda_{x,i}}|\psi\rangle_{\mathcal{C}(g)},$$
(61)

$$\sigma_{z}^{(\mathcal{C}_{I}(g),i)}(U\sigma_{z}^{(i)}U^{\dagger})^{(\mathcal{C}_{O}(g))}|\psi\rangle_{\mathcal{C}(g)}=(-1)^{\lambda_{z,i}}|\psi\rangle_{\mathcal{C}(g)},$$

with $\lambda_{x,i}, \lambda_{z,i} \in \{0,1\}$ and $1 \leq i \leq n$.

Then, on the cluster C(g) the gate g acting on an arbitrary quantum input state $|\psi_{in}\rangle$ can be realized according to Scheme 1 with the measurement directions in $C_M(g)$ described by $\mathcal{M}^{(\mathcal{C}_M(g))}$ and the measurements of the qubits in $C_I(g)$ being σ_x measurements. Thereby, the input and output state in the simulation of g are related via

$$|\psi_{\rm out}\rangle = UU_{\Sigma}|\psi_{\rm in}\rangle, \qquad (62)$$

where U_{Σ} is a byproduct operator given by

$$U_{\Sigma} = \bigotimes_{(\mathcal{C}_{I}(g) \ni i)=1}^{n} (\sigma_{z}^{[i]})^{s_{i}+\lambda_{x,i}} (\sigma_{x}^{[i]})^{\lambda_{z,i}}.$$
 (63)

[Raussendorf, Browne & Briegel PRA '03]

2D cluster state and graph states

□ Can be created by applying CZ gates to each pair with edge

Cluster state: special case of general "graph" states

$$K_v | G \rangle = | G \rangle, \ \forall \ \text{vertex} \ v$$

$$K_v = X_v \bigotimes_{u \in \text{Nb}(v)} Z_u \quad \text{(can show this, using above def. of G)}$$

→ Uniquely define the state G, also via Hamiltonian $H = -\sum K_v$

Z measurement on graph state

The effect is just to remove the measured qubit, keeping the remaining entanglement structure

$$\begin{array}{c} & & |\Psi_{G} = |0\rangle_{a} |\Psi_{G\setminus a}\rangle + |1\rangle_{a} \left(\prod_{b \in NB(a)} Z_{b}\right) |\Psi_{G\setminus a}\rangle \\ & \\ \Rightarrow \text{ Graph after Z measurement on a:} \qquad 0 \begin{array}{c} & & \\ & 1 \end{array} \\ & 1 \end{array} \\ & & \\ \checkmark \text{ If outcome =0:} \qquad |0\rangle_{a} |+\rangle_{1} |C\rangle_{234} \qquad |C\rangle_{234} : \text{ linear cluster state} \end{array}$$

 $\checkmark \text{ If outcome} = 1: \qquad |0\rangle_a |-\rangle_1 Z_2 Z_3 |C\rangle_{234}$

□ For X & Y measurements, see [Hein, Eisert, Briegel '04, Hein et al. '06]

2D cluster state is a resource for quantum computation

 Whole entangled state is created first (by whatever means)

Operations needed for *universal* QC are single-qubit measurements only

→ Pattern of measurement gives computation (entanglement is being consumed → one-way)

→ Elementary "Lego pieces" for QC:

general rotation

Cluster state for universal computation

(1) Each wire simulates one-qubit evolution (gates)

(2) Each bridge simulates two-qubit gate (CNOT)

2D or higher dimension is needed for universal QC & Graph connectivity is essential (percolation)

Realizations of cluster states

□ Bloch's group: controlled collision in cold atoms (Nature 2003)

□ J-W Pan's group: 4-photon 6 qubit and CNOT (PRL 2010)

Cluster state: a valence-bond picture

Cluster state = a valence-bond state [Verstraete & Cirac '04]
 = a projected entangled pair state (PEPS)

- > Bond of two virtual qubits = $CZ|++\rangle = |0\rangle|+\rangle + |1\rangle|-\rangle$
- Projection of several virtual qubits to physical qubit =
 - $P=|0\rangle\langle0000|+|1\rangle\langle1111|$

Quantum computation via teleportation

[see also Gottesman & Chuang '99]

2-qubit gate:

QC in correlation space

Previous picture of valence bond was generalized by Gross and Eisert using matrix product states (MPS) and PEPS [Gross & Eisert '07, Gross et al. '07]

Illustrate with 1D cluster state:

□ Measurement outcome φ_i at site i: $A(\phi)$

 $A(\phi_i) \equiv \sum_{s_i} \langle \phi_i | s_i
angle A_{s_i}$

 $\langle \phi_n, ... \phi_i, ..., \phi_1 | \Psi \rangle = \vec{L} \cdot A(\phi_n) \cdots A(\phi_i) \cdots A(\phi_1) \cdot \vec{R}$

Cluster state QC: in correlation space

\Box Measurement outcome φ_i at site i:

 $A(\phi_i) \equiv \sum_{s_i} \langle \phi_i | s_i
angle A_{s_i}$

 $\langle \phi_n, ... \phi_i, ..., \phi_1 | \Psi \rangle = \vec{L} \cdot A(\phi_n) \cdots A(\phi_i) \cdots A(\phi_1) \cdot \vec{R}$

□ As spins are measured, the boundary vector R is operated by gates $|R\rangle \rightarrow A_1(\phi_1)|R\rangle \rightarrow A_1(\phi_2)A_1(\phi_1)|R\rangle \rightarrow \cdots$

□ For 1D cluster state: $A(0) = |+\rangle \langle 0|, A(1) = |-\rangle \langle 1|$

- → measure in basis $|\pm \xi\rangle = (e^{-i\xi/2}|0\rangle \pm e^{i\xi/2}|1\rangle)/\sqrt{2}$
- → obtain same 1-qubit gate as before: $A(\xi, s) = e^{i\xi/2} |+\rangle \langle 0| + (-1)^s e^{-i\xi/2} |-\rangle \langle 1| = He^{i\xi Z/2} Z^s$
- □ 2-qubit gates use 2D PEPS → see Gross & Eisert '07

Comment: deriving MPS for cluster state

$$|0+\rangle + |1-\rangle = (|0\rangle |1\rangle) \begin{pmatrix} |+\rangle \\ |-\rangle \end{pmatrix}$$

$$(|+\rangle \\ (|+\rangle \\ |-\rangle) (|0\rangle |1\rangle) = (|+0\rangle |+1\rangle \\ |-1\rangle)$$

$$P_{v} = |0\rangle\langle 00| + |1\rangle\langle 11|$$

□ MPS form:

$$P_{v}\left(\begin{array}{cc} |+0\rangle & |+1\rangle \\ |-0\rangle & |-1\rangle \end{array}\right) = \frac{1}{\sqrt{2}}\left(\begin{array}{cc} |0\rangle & |1\rangle \\ |0\rangle & -|1\rangle \end{array}\right) = |0\rangle\left(|+\rangle\langle 0|\right) + |1\rangle\left(|-\rangle\langle 1|\right)$$

 $A(0) = |+\rangle \langle 0|, \ A(1) = |-\rangle \langle 1|$

Related talk:

Monday Session A: 4. [3:00-3:20] **Anurag Anshu, Itai Arad and Aditya Jain.** *How local is the information in MPS/PEPS tensor networks?*

Cluster states: not unique ground state of 2-body Hamiltonians

First	proved	by	Nie	lsen
		~)		

[Haselgrov, Nielsen & Osborne '03, Nielsen '04]

□ Van den Nest et al. proved for general (connected) graph states G:

→ For approximation: ground-state of 2-body Hamiltonian can be ϵ -close to G, but the gap is proportional to ϵ [Van den Nest et al. '08]

Bartlett & Rudolph constructed a two-body Hamiltonian such that the ground state is approximately an encoded cluster state

$$H_{S} = -\sum_{\mu \in S} \sum_{i \sim i'} \sigma^{z}_{(\mu,i)} \otimes \sigma^{z}_{(\mu,i')}$$

$$V = -\sum_{(\mu,i)\sim(\nu,j)} \left(\sigma_{(\mu,i)}^{z} \otimes \sigma_{(\nu,j)}^{x} + \sigma_{(\mu,i)}^{x} \otimes \sigma_{(\nu,j)}^{z}\right)$$

[Bartlett & Rudolph '06]

 Darmawan & Bartlett constructed encoded cluster state by deforming the AKLT Hamiltonian [Darmawan & Bartlett '14]

Linear optic QC & cluster state

- ❑ Linear optic universal QC possible with single photon source, linear optic elements (beam splitters, mirrors, etc) & photon counting
 → High overhead in entangling gates ^[Knill, Laflamme & Milburn '01]
- □ Cluster state helps reduce this overhead
 - → Grow cluster states efficiently

[Yoran & Reznik '03; Nielsen '04; Browen & Ruldoph '05; Kieling, Rudolph & Eisert '07]

Experiments: see e.g. [O'Brien Science '07]

Create continuous-variable cluster states

□ Use frequency comb and parametric amplifier in cavity

Related talks:

Thursday Session A: 5. [3:20-3:40] **Hoi-Kwan Lau and Martin Plenio.** Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

6. [3:40-4:00] Alessandro Ferraro, Oussama Houhou, Darren Moore, Mauro Paternostro and Tommaso Tufarelli. *Measurement-based quantum computation with mechanical oscillators*

Fault tolerant cluster-state QC

Uses a 3d cluster state and implements surface codes in each 2d layer

→ Error threshold 0.75%, qubit loss threshold 24.9%

[Barrett & Stace '10]

Related talk:

Friday 10:30-11:00 [Long] **Guillaume Dauphinais and David Poulin.** Fault Tolerant Quantum Memory for non-Abelian Anyons

Universal blind quantum computation

[Broadbent, Fitzsimons & Kashefi '09]

□ Using the following cluster state (called brickwork state)

Alice prepares

$$|\Psi
angle = \mathop{\otimes}\limits_{x,y} \left(|0
angle_{x,y} + e^{i heta_{x,y}}|1
angle_{x,y}
ight)$$

with random

$$heta_{x,y}=0,\pi/4,\ldots 7\pi/4$$

 Bob entangles all qubits according to the brickwork graph via CZ gates Alice tells Bob what measurement basis for Bob to perform and he returns the outcome (compute like one-way computer)

1 Alice computes $\phi'_{x,y}$ where $s^X_{0,y} = s^Z_{0,y} = 0$. $\phi'_{x,y} = (-1)^{s^X_{x,y}} \phi_{x,y} + s^Z_{x,y} \pi$

2 Alice chooses
$$r_{x,y} \in_R \{0,1\}$$
 and computes $\delta_{x,y} = \phi'_{x,y} + \theta_{x,y} + \pi r_{x,y}$.

- 3 Alice transmits $\delta_{x,y}$ to Bob. Bob measures in the basis $\{ |+_{\delta_{x,y}} \rangle, |-_{\delta_{x,y}} \rangle \}$.
- 4 Bob transmits the result $s_{x,y} \in \{0,1\}$ to Alice.
- 5 If $r_{x,y} = 1$ above, Alice flips $s_{x,y}$; otherwise she does nothing.

→ Alice can achieve her quantum computation without Bob knowing what she computed!!

➔ Realized in an exp. Barz et al. 2012 We have seen the cluster states on the square lattice and the brickwork lattice for universal for quantum computation

Q: How much do we know about the general cluster/graph states?

Universality in graph/cluster states

- Beyond square & brickwork: other 2D graph/cluster states on regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal
 - → Can use local measurement to convert one to the other [Van den Nest et al. '06] (with fewer qubits, but still macroscopic)

Graph states on regular lattices

Beyond square & brickwork: other 2D graph/cluster states on regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal

Universality in graph/cluster states

- Beyond square & brickwork: other 2D graph/cluster states on regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal
 - → Can use local measurement to convert one to the other [Van den Nest et al. '06] (with fewer qubits, but still macroscopic)
- Faulty square lattice (degree ≤ 4)
 [Browne et al. '08]
 - → As long as it is sufficiently connected (a la percolation), can find sub-graph ~ honeycomb

Cluster state on faulty lattice

[Browne et al. '08]

- No qubits on empty sites (degree ≤ 4)
 ←→ site percolation
- $\textbf{\$ But assume perfect CZ gates} \quad |G\rangle = \underset{\langle i,i\rangle}{\otimes} CZ_{ij} \left(|+\rangle |+\rangle \cdots |+\rangle \right)$
- As long as probability of occupied sites > site percolation threshold
 Still universal for MBQC

Universality in graph/cluster states

- Beyond square & brickwork: other 2D graph/cluster states on regular lattices, e.g. triangular, honeycomb, kagome, etc. are universal
 - → Can use local measurement to convert one to the other [Van den Nest et al. '06] (with fewer qubits, but still macroscopic)
- Faulty square lattice (degree ≤ 4)
 [Browne et al. '08]
 - → As long as it is sufficiently connected (a la percolation), can find sub-graph ~ honeycomb
- Any 2D planar random graphs in supercritical phase of percolation are universal

Other universal states

- □ So far no complete characterization for resource states
- Can they be unique ground state with 2-body Hamiltonians with a finite gap?
 - → If so, create resources by cooling!
 - ✤ TriCluster state [Chen et al. '09]

1D (not universal): [Gross & Eisert '07, '10] [Brennen & Miyake '08?]

2D (universal): [Wei, Affleck & Raussendorf '11] [Miyake '11] [Wei et al. '13-'15]

Symmetry-protected topological states

1D (not universal): [*Else, Doherty & Bartlett '12*] [*Miller & Miyake '15*] [*Prakash & Wei '15*] 2D (universal, *but not much explored*): [*Poulsen Nautrup & Wei '15*] [*Miller & Miyake '15*]

Example ground state of two-body Hamiltonian as computational resource

□ TriCluster state (6-level) [Chen, Zeng, Gu, Yoshida & Chuang, PRL'09]

$$H_{triC}^{\star} = \sum_{a} \left(h_{ab} + h_{ba} + h_{a}^{\flat} \right)$$

$$\begin{split} h_{ab} &= \\ & 2(2S_{a_z}-5)(2S_{a_z}-3)(2S_{a_z}-1)(2S_{a_z}+1)(4S_{a_z}+11) \\ & (2S_{b_z}+5)(2S_{b_z}+3)(2S_{b_z}-1)(2S_{b_z}+1)(4S_{b_z}-11) \\ & - 75\sqrt{2}S_{a_+}(2S_{a_z}-5)(2S_{a_z}+3)(2S_{a_z}-1)(2S_{a_z}+1) \\ & (48S_{b_z}^4+64S_{b_z}^3-280S_{b_z}^2-272S_{b_z}+67) \\ & + 75\sqrt{2}(48S_{a_z}^4-64S_{a_z}^3-280S_{a_z}^2+272S_{a_z}+67) \\ & S_{b_+}(2S_{b_z}-5)(2S_{b_z}-3)(2S_{b_z}-1)(2S_{b_z}+3) \\ & + 4\sqrt{10}S_{a_+}^3(2S_{a_z}-1)(2S_{a_z}-3)\times \\ & (128S_{b_z}^5+560S_{b_z}^4-2840S_{b_z}^2-3848S_{b_z}+675) \\ & + 4\sqrt{10}(128S_{a_z}^5-560S_{a_z}^4+2840S_{a_z}^2-3848S_{a_z}-675) \\ & S_{b_+}^3(2S_{b_z}-5)(2S_{b_z}-3)+h.c. \end{split}$$

$$\begin{split} h_{a}^{b} &= \\ &-25(2S_{az}-5)(2S_{az}-3)(2S_{az}+3)(2S_{az}+5) \\ &+ 25S_{a_{+}}^{3}(2S_{az}-5)(2S_{az}-1) \\ &(224S_{b_{z}}^{5}-16S_{b_{z}}^{4}-1968S_{b_{z}}^{3}+40S_{b_{z}}^{2}+3550S_{b_{z}}-9) \\ &- 12S_{a_{+}}^{5} \\ &(416S_{b_{z}}^{5}-80S_{b_{z}}^{4}-3600S_{b_{z}}^{3}+520S_{b_{z}}^{2}+5994S_{b_{z}}-125) \\ &+ h.c. + (a \Leftrightarrow b) \,, \end{split}$$

Too much entanglement is useless

□ States (*n*-qubit) possessing too much geometric entanglement E_g are not universal for QC (i.e if $E_g > n - \delta$)

[Gross, Flammia & Eisert '09; Bremner, Mora & Winter '09]

- $E_g(|\Psi\rangle) = -\log_2 \max_{\phi \in \mathcal{P}} |\langle \phi | \Psi \rangle|^2$ $\mathcal{P} = \text{set of product states}$
- Intuition: if state is very high in geometric entanglement, every local measurement outcome has low probability

→ whatever local measurement strategy, the distribution of outcomes is so random that one can simulate it with a random coin (thus not more powerful than classical random string)

- □ Moreover, states with high entanglement are typical: those with $E_g < n - 2\log_2(n) - 3$ is rare, i.e. with fraction $< e^{-n^2}$
 - → Universal resource states are rare!!

I. Introduction

II. One-way (measurement-based) quantum computers

III. Other entangled resource states: AKLT family

IV. Summary

A new direction: valence-bond ground states of isotropic antiferromagnet

- AKLT (Affleck-Kennedy-Lieb-Tasaki) states/models
 - Importance: provide strong support for Haldane's [AKLT'87,88] conjecture on spectral properties of spin chains
 - Provide concrete example for symmetry-protected topological order [Gu & Wen '09, '11]
- □ States of spin S=1,3/2, 2,.. (defined on any lattice/graph)
 - → Unique* ground states of gapped[#] two-body isotropic Hamiltonians $H = \sum_{\langle i,j \rangle} f(\vec{S}_i \cdot \vec{S}_j) \qquad f(x) \text{ is a polynomial}$

*w/ appropriate boundary conditions; #gap proved in 1D; evidence in 2D: Garcia-Saez, Murg, Wei 12

(hybrid) AKLT state defined on any graph

virtual qubits= # neighbors

- \Box S= # neighbors / 2
- Physical spin Hilbert space = symmetric subspace of qubits

 P_v = projection to symmetric subspace of n qubit \equiv spin n/2

1D AKLT state for simulating 1-qubit gates

Easy to see from its matrix product state (MPS)

$$[Gross \& Eisert, PRL '07][Brenne \& Miyake, PRL '09]$$
singlet $|01\rangle - |10\rangle = (|0\rangle |1\rangle) \begin{pmatrix} |1\rangle \\ -|0\rangle \end{pmatrix}$

$$\begin{pmatrix} |1\rangle \\ -|0\rangle \end{pmatrix} (|0\rangle |1\rangle) = \begin{pmatrix} |10\rangle |11\rangle \\ -|00\rangle -|01\rangle \end{pmatrix}$$

$$P_v = |+1\rangle\langle 00| + |0\rangle\langle\langle 01| + \langle 10|\rangle/\sqrt{2} + |-1\rangle\langle 11|$$

$$MPS \text{ form:} \quad |0\rangle \equiv |z\rangle, |+1\rangle \equiv -(|z\rangle + i|y\rangle)/\sqrt{2}, |-1\rangle \equiv (|z\rangle - i|y\rangle)/\sqrt{2}$$

$$P_v \begin{pmatrix} |10\rangle |11\rangle \\ -|00\rangle -|01\rangle \end{pmatrix} = \begin{pmatrix} |0\rangle/\sqrt{2} |-1\rangle \\ -|+1\rangle -|0\rangle\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}}(|z\rangle X + |y\rangle Y + |z\rangle Z)$$

$$\Rightarrow \text{ Gates with superposition of X, Y, Z are achievable}$$

→ Arbitrary 1-qubit gates possible (but universal QC requires
 2-qubit gates) → any 2D AKLT states universal?

Hamiltonian & SPT order

A=X, Y or Z

y, or z

□ 1D spin-1 AKLT state $|x\rangle X + |y\rangle Y + |z\rangle Z$ is ground state of the gapped 2-body Hamiltonian

$$H = \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + \frac{1}{3} \left(\vec{S}_{i} \cdot \vec{S}_{i+1} \right)^{2}$$
 x,

 AKLT is a symmetry-protected topological (SPT) state, e.g. by Z₂xZ₂ symmetry (rotation around x or z by 180°)

Under transformation on physical spins:

$$egin{aligned} |0
angle \equiv |z
angle, |+1
angle \equiv -(|x
angle+i|y
angle)/\sqrt{2}, \ |-1
angle \equiv (|x
angle-i|y
angle)/\sqrt{2} \ U_z(\pi) = egin{pmatrix} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{pmatrix} & |z
angle o |z
angle, \ |x
angle o -|x
angle, \ |y
angle o -|y
angle \ A o Z \cdot A \cdot Z \ U_x(\pi) = egin{pmatrix} 0 & 0 & -1 \ 0 & -1 & 0 \ -1 & 0 & 0 \end{pmatrix} & |z
angle o -|z
angle, \ |x
angle o |x
angle, \ |y
angle o -|y
angle \ A o X \cdot A \cdot X \end{aligned}$$

➔ Projective representation (e.g. Z & X) of symmetry implies SPT order

SPT order of cluster state

□ MPS for cluster state (single site):

 $A(0) = |+\rangle \langle 0|, \ A(1) = |-\rangle \langle 1|$ $\rightarrow +/- \text{ basis: } A(+) \sim A(0) + A(1) = H, \ A(-) = HZ$

$$A(++) \rightarrow A(++), A(+-) \rightarrow A(+-)$$

$$A(-+) \rightarrow -A(-+), A(--) \rightarrow -A(--)$$

$$A(\alpha, \beta) \rightarrow Z \cdot A(\alpha, \beta) \cdot Z$$

□ Similarly for IXIX... : $A(\alpha, \beta) \to X \cdot A(\alpha, \beta) \cdot X$

➔ projective representation ➔ SPT order

SPT order & gates

 AKLT is a symmetry-protected topological (SPT) state, e.g. by Z₂xZ₂ symmetry (rotation around x or z by 180°) with Hamiltonian

$$H = \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + \frac{1}{3} \left(\vec{S}_{i} \cdot \vec{S}_{i+1} \right)^{2}$$

ID cluster state is also a SPT state, e.g. by Z₂xZ₂ symmetry (XIXI... or IXIX..) with Hamiltonian

$$H = -\sum_{i} Z_{i-1} X_i Z_{i+1}$$

□ Generic states in such 1D SPT phase

$$A_{lpha} = \sigma_{lpha} \otimes B_{lpha}$$
 [
logical junk [
subspace subspace]

[*Else et al.* '12] [*Prakash & Wei* '15]

- ➔ Only identity gate (up to Pauli) is protected
- → But arbitrary 1-qubit gate is possible, e.g. with S₄ symmetry [Miller & Miyake '15]

2D SPT states for universal QC

□ A "Control-control-Z state": [Miller & Miyake '15]

 ψ = CCZ (Control-Control-Z) gates applied to all triangles with |+++ ..++>

(with symmetry $Z_2 x Z_2 x Z_2$)

 Fixed-point wavefunctions of generic SPT states (with any nontrivial SPT order) are universal resource; see

Thursday Session A: 4. [3:00-3:20] **Hendrik Poulsen Nautrup and Tzu-Chieh Wei.** *Symmetry-protected topologically ordered states for universal quantum computation* In the remaining, we will focus on AKLT family of states for universal quantum computation

Converting 1D AKLT state to cluster state

$$\begin{array}{c} \text{singlet } |01\rangle - |10\rangle \\ \hline \\ \hline \\ P_v \\ P_v \\ P_v = |+1\rangle\langle 00| + |0\rangle(\langle 01| + \langle 10|)/\sqrt{2} + |-1\rangle\langle 11| \\ \hline \\ \end{array}$$

Via adaptive local measurement (i.e. state reduction) [Chen, Duan, Ji & Zeng '10]

□ Via fixed POVM [Wei, Affleck & Raussendorf '11] → generalizable to 2D AKLT: $F_x^{\dagger}F_x + F_y^{\dagger}F_y + F_z^{\dagger}F_z = I$

$$F_x \sim |S_x = 1\rangle \langle S_x = 1| + |S_x = -1\rangle \langle S_x = -1| \sim |++\rangle \langle ++|+|--\rangle \langle --|$$

$$F_y \sim |S_y = 1\rangle \langle S_y = 1| + |S_y = -1\rangle \langle S_y = -1| \sim |i,i\rangle \langle i,i|+|-i,-i\rangle \langle -i,-i|$$

$$F_z \sim |S_z = 1\rangle \langle S_z = 1| + |S_z = -1\rangle \langle S_z = -1| \sim |00\rangle \langle 00| + |11\rangle \langle 11|$$

ightarrow Outcome labeled by x,y, z: $|\psi\rangle
ightarrow F_{\alpha}|\psi\rangle$

Realizations of 1D AKLT state

□ Resch's group: photonic implementation (Nature Phys 2011)

2D AKLT states for quantum computation?

Wei, Affleck & Raussendorf, PRL '11; Miyake '11; On various lattices Wei, PRA '13, Wei, Haghnegahdar& Raussendorf, PRA '14 Wei & Raussendorf '15 ... square-octagon 😃 'cross' star honeycomb spin-3/2: square-hexagon 😃 decorated-square square Kagome (spin-2 spin-3/2 mixture) (spin-2 spin-1 mixture) (spin-2) (spin-2)

Proposal for 2D AKLT states

□ Liu, Li and Gu [JOSA B 31, 2689 (2014)]

□ Koch-Janusz, Khomskii & Sela [PRL 114, 247204 (2015)]

t_{2g} electrons in Mott insulator

AKLT states on trivalent lattices

- - ➔ physical spin = symmetric subspace of qubits
- Two virtual qubits on an edge form a singlet $P = |3/2\rangle\langle 000| + |-3/2\rangle\langle 111| + |1/2\rangle\langle W| + |-1/2\rangle\langle \overline{W}|$

Use generalized measurement (POVM)

$$F_{z} = \sqrt{\frac{2}{3}} \left(\left| \frac{3}{2} \right\rangle \left\langle \frac{3}{2} \right|_{z} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{z} \right) \qquad \begin{bmatrix} \text{Wei, Affleck \& Raussendorf '11} \\ \text{Miyake '11} \end{bmatrix}$$

$$F_{x} = \sqrt{\frac{2}{3}} \left(\left| \frac{3}{2} \right\rangle \left\langle \frac{3}{2} \right|_{x} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{x} \right) \qquad \text{Completeness:}$$

$$F_{y} = \sqrt{\frac{2}{3}} \left(\left| \frac{3}{2} \right\rangle \left\langle \frac{3}{2} \right|_{y} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{y} \right) \qquad F_{x}^{\dagger} F_{x} + F_{y}^{\dagger} F_{y} + F_{z}^{\dagger} F_{z} = I$$

POVM gives random outcome x, y and z at each site

Can show POVM on all sites converts AKLT to a graph state (graph depends on random x, y and z outcomes)

Proving graph state

Let us first explain the notation. Consider a central vertex $C \in V(G_0(\{F\}))$ and all its neighboring vertices $C_\mu \in V(G_0)$. Denote the POVM outcome for all \mathcal{L} sites $v \in C, C_\mu$ by a_c and a_μ , respectively. Denote by E_μ the set of \mathcal{L} edges that run between C and C_μ . Denote by E_c the set of \mathcal{L} edges internal to C. Denote by V_c the set of all qubits in C, and by V_μ the set of all qubits in C_μ . (Recall that there are four qubit locations per \mathcal{L} vertex $v \in C, C_\mu$.) Extending Eq. (33) of Ref. [17] to the spin-2 case, we have

$$\begin{aligned} \mathcal{K}_{C} &= \bigotimes_{\mu} \bigotimes_{e \in E_{\mu}} (-1) \sigma_{a_{\mu}}^{(u(e))} \sigma_{a_{\mu}}^{(v(e))} \bigotimes_{e' \in E_{c}} (-1) \sigma_{b}^{(v_{1}(e'))} \sigma_{b}^{(v_{2}(e'))} \\ &= (-1)^{|E_{c}| + \sum_{\mu} |E_{\mu}|} \bigotimes_{\mu} \bigotimes_{e \in E_{\mu}} \sigma_{a_{\mu}}^{(u(e))} \sigma_{a_{\mu}}^{(v(e))} \\ &\times \bigotimes_{e' \in E_{c}} \sigma_{b}^{(v_{1}(e'))} \sigma_{b}^{(v_{2}(e'))}. \end{aligned}$$

We take the following convention for b as reported in Table II. For POVM outcome $a_c = z$, we take b = x; for $a_c = x$, we take b = z; for $a_c = y$, we take b = z. With this choice we have

$$\mathcal{K}_{C} = (-1)^{|E_{c}| + \sum_{\mu} |E_{\mu}|} \bigotimes_{\mu} (\bigotimes_{e \in E_{\mu}} \lambda_{u(e)}) Z_{\mu}^{|E_{\mu}|}$$
$$\times \bigotimes_{e \in E_{\mu}} \sigma_{a_{\mu}}^{v(e)} \sigma_{b}^{v(e)} X_{c}.$$

$$\mathcal{K}_{C} = (-1)^{|E_{c}| + \sum_{\mu} |E_{\mu}|} \bigotimes_{\mu} (\bigotimes_{e \in E_{\mu}} \lambda_{u(e)}) Z_{\mu}^{|E_{\mu}|}$$

$$\times \Big(\bigotimes_{a_{\mu} \neq b} \bigotimes_{e \in E_{\mu}} \lambda_{v(e)} \Big) Q_{c},$$

$$Q_{c} = \begin{bmatrix} i^{n \neq b} X_{c} & \text{if } n_{\neq b} & \text{is even} \\ -i^{1+n \neq b} (-1)^{\delta_{a_{c},x}} Y_{c} & \text{if } n_{\neq b} & \text{is odd} \end{bmatrix}$$

$$n_{\neq b} \equiv \sum_{\mu, a_{\mu} \neq b} |E_{\mu}|$$

TABLE II.	The choice	ce of b	and $a_{\mu \neq b}$.
-----------	------------	---------	------------------------

in				
for	a _c	Z.	x	у
his	b	X	Z	Z.
	$a_{\mu \neq b}$	у	у	X
POVM outcome		z	X	у
Stabil	izer generator	$\lambda_i \lambda_j \sigma_z^{[i]} \sigma_z^{[j]}$	$\lambda_i \lambda_j \sigma_x^{[i]} \sigma_x^{[j]}$	$\lambda_i \lambda_j \sigma_y^{[i]} \sigma_y^{[j]}$
Logic	cal \overline{X} operator	$\bigotimes_{j=1}^{4 \mathcal{C} } \sigma_x^{[j]}$	$\bigotimes_{j=1}^{4 \mathcal{C} } \sigma_z^{[j]}$	$\bigotimes_{j=1}^{4 \mathcal{C} } \sigma_z^{[j]}$
Logic	al \overline{Z} operator	$\lambda_i \sigma_z^{[i]}$	$\lambda_i \sigma_x^{[i]}$	$\lambda_i \sigma_y^{[i]}$

Probability of POVM outcomes

Measurement gives random outcomes, but what is the probability of a given set of outcomes?

$$P(\{\alpha(v\}) \sim \langle \psi_{\text{AKLT}} | \bigotimes_{v} F_{\alpha(v)}^{\dagger} F_{\alpha(v)} | \psi_{\text{AKLT}} \rangle$$

- Can evaluate this using coherent states; alternatively use tensor product states
- □ Turns out to be a geometric object

[Wei, Affleck & Raussendorf, PRL '11 & PRA '12]

$$P(\{\alpha(v\}) \sim 2^{|V| - |\mathcal{E}|})$$

Difference from 1D case: graph & percolation

[Wei, Affleck & Raussendorf PRL'11]

- 1. What is the graph? which determines the graph state
 → How to identify the graphs ?
- 2. Are they percolated? (if so, universal resource)

Recipe: construct graph for 'the graph state'

Examples: random POVM outcomes x, y, z

honeycomb

square octagon

 $P(\{\alpha(v\}) \sim 2^{|V| - |\mathcal{E}|}$

Step 1: Merge sites to "domains" → vertices

> 1 domain = 1 logical qubit

honeycomb

Step 2: edge correction between domains

> Even # edges = 0 edge, Odd # edges = 1 edge (due to $\sigma_z^2 = I$ in the C-Z gate)

honeycomb

square octagon

Step 3: Check connections (percolation)

> Sufficient number of wires if graph is in supercritical phase (percolation)

Verified this for honeycomb, square octagon and cross lattices
 AKLT states on these are universal resources

How robust is connectivity?

 Characterized by artificially removing domains to see when connectivity collapses (phase transition)

Frustration on star lattice

Cannot have POVM outcome xxx, yyy or zzz on a triangle

→ Consequences:

- (1) Only 50% edges on triangles occupied
 < p_{th} ≈0.5244 of Kagome
- \rightarrow disconnected graph

- (2) Simulations confirmed: graphs not percolated
 - → AKLT on star likely NOT universal

Difficulty for spin-2

Technical problem: trivial extension of POVM does NOT work!

$$F_{z} = |2\rangle \langle 2|_{z} + |-2\rangle \langle -2|_{z}$$

$$F_{x} = |2\rangle \langle 2|_{x} + |-2\rangle \langle -2|_{x}$$

$$F_{y} = |2\rangle \langle 2|_{y} + |-2\rangle \langle -2|_{y}$$

$$F_x^{\dagger}F_x + F_y^{\dagger}F_y + F_z^{\dagger}F_z \neq c \cdot I$$

→ Leakage out of logical subspace (error)

□ Fortunately, can add elements K's to complete the identity

$$\begin{aligned} F_{\alpha} &= \sqrt{\frac{2}{3}} \big(|S_{\alpha} = +2\rangle \langle S_{\alpha} = +2| + |S_{\alpha} = -2\rangle \langle S_{\alpha} = -2| \big) & & & & & \\ K_{\alpha} &= \sqrt{\frac{1}{3}} \big(|\phi_{\alpha}^{-}\rangle \langle \phi_{\alpha}^{-}| \big) & & & & & & & \\ K_{\alpha} &= x, y, z & & & & & & \\ \alpha &= x, y, z & & & & & \\ completeness: & \sum_{\alpha = x, y, z} F_{\alpha}^{\dagger} F_{\alpha} + \sum_{\alpha = x, y, z} K_{\alpha}^{\dagger} K_{\alpha} = I \end{aligned}$$

Another difficulty: sample POVM outcomes

$$p(\{F,K\}) = \langle \text{AKLT} | \bigotimes_{u} F_{\alpha(u)}^{\dagger} F_{\alpha(u)} \bigotimes_{v} K_{\beta(v)}^{\dagger} K_{\beta(v)} | \text{AKLT} \rangle = ? \quad [\underline{Wei}, Raussendorf '15]$$

□ How to calculate such an *N*-body correlation function?

Lemma. If there exists a set Q (subset of D_K) such that $-\otimes_{\mu \in Q} (-1)^{|V_{\mu}|} X_{\mu}$ is in the stablizer group $\mathcal{S}(|G_0\rangle)$ of the state $|G_0\rangle$, then $p(\{F,K\}) = 0$. Otherwise,

$$p(\lbrace F, K \rbrace) = c \left(\frac{1}{2}\right)^{|\mathcal{E}| - |V| + 2|J_K| - \dim(\ker(H))},$$

where c is a constant. $\begin{bmatrix}
|G_0\rangle \sim \bigotimes_{\nu} F_{\alpha(\nu)}|\text{AKLT}\rangle \\
D_K: \text{ set of domains having all sites POVM } K \\
(H)_{\mu\nu} = 1 \text{ if } \{\mathcal{K}_{\mu}, X_{\nu}\} = 0, \text{ and } (H)_{\mu\nu} = 0 \text{ otherwise}
\end{bmatrix}$

Bottom line: can use Monte Carlo sampling

• POVM gives random outcome F_x , F_y , F_z , K_x , K_y , K_z at each site

→ Local action (depends on outcome):

$$\begin{split} |\Phi\rangle &\longrightarrow F_{\alpha=x,y,\mathrm{or}\,z} |\Phi\rangle \\ & \text{or} \\ |\Phi\rangle &\longrightarrow K_{\alpha=x,y,\,\mathrm{or}\,z} |\Phi\rangle \end{split}$$

Post-POVM state: graph state

$$\begin{cases} F_{\alpha} = \sqrt{\frac{2}{3}} \left(|S_{\alpha} = +2\rangle \langle S_{\alpha} = +2| + |S_{\alpha} = -2\rangle \langle S_{\alpha} = -2| \right) & [Wei, Haghnegahdar, Raussendorf'14] \\ K_{\alpha} = \sqrt{\frac{1}{3}} \left(|\phi_{\alpha}^{-}\rangle \langle \phi_{\alpha}^{-}| \right) = \frac{1}{\sqrt{2}} |\phi_{\alpha}^{-}\rangle \langle \phi_{\alpha}^{-}| F_{\alpha} & |\phi_{\alpha}^{\pm}\rangle \equiv \sqrt{\frac{1}{2}} \left(|S_{\alpha} = 2\rangle \pm |S_{\alpha} = -2\rangle \right) \\ \alpha = x, y, z \end{cases}$$

□ If *F* outcome on **all** sites
 → a *planar* graph state

$$|G_0
angle = \mathop{\otimes}\limits_v F^{(v)}_{lpha_v} |\mathrm{AKLT}
angle$$

- Vertex = a domain of sites with same color (x, y or z)
- Koutcome = F followed by ϕ^{\pm} measurement (then *post-selecting* '-' result)

→ Either

- (1) shrinks domain size [trivial] or
- (2) logical X or Y measurement [nontrivial]

POVM -> Graph of the graph state

Vertex = domain = connected sites of same color Edge = links between two domains (modulo 2)

$$|G_0
angle = \mathop{\otimes}\limits_v F^{(v)}_{lpha_v} | ext{AKLT}
angle$$

measurement

measurement

→ non-planar graph

Non-planarity from X/Y measurement

[See e.g. Hein et '06]

→ Effect of X measurement is more complicated than Y measurement

Restore planarity: further measurement

Deal with non-planarity due to Pauli X measurement:
 remove all vertices surrounding that of X measurement (via Z measurement)

Deal with non-planarity due to Pauli Y measurement:
 remove only subset of vertices surrounding that of Y measurement

POVM -> Graph of the graph state

Vertex = domain = connected sites of same color Edge = links between two domains (modulo 2)

measurement

measurement

□ Pauli X or Y measurement on planar graph state → non-planar graph

Restore Planarity by Another round of measurement

Examining percolation of typical graphs (resulting from POVM and active logical Z measurement)

- 1. As system size N=L x L increases, exists a spanning cluster with high probability
- 2. Robustness of connectivity: finite percolation threshold (deleting each vertex with increasing probability)
- ✓ 3. Data collapse: verify that transition is continuous (critical exponent v = 4/3)

Spin-2 AKLT on square is universal for quantum computation

- □ Because the typical graph states (obtained from local measurement on AKLT) are universal → hence AKLT itself is universal
- Difference from spin-3/2 on honeycomb: *not all* randomly assigned POVM outcomes are allowed
 weight formula is crucial
- □ Emerging (partial) picture for AKLT family:
 - AKLT states involving spin-2 and other lower spin entities are universal if they reside on a 2D frustration-free regular lattice with any combination of spin-2, spin-3/2, spin-1 and spin-1/2

Summary

Introduced one-way (cluster-state) quantum computation

→ Measurement-based QC uses entanglement

➔ Teleportation viewpoint and tensor-network approach (correlation space QC)

- ➔ Universality in graph states
- → Fault tolerance & surface code
- → Blind quantum computation
- ➔ Possible connection to SPT order
- Showed various AKLT states (on different 2D lattices) provide universal resource for quantum computation

Not covered

□ MBQC, classical spin models & complexity

[Van den Nest, Dur & Briegel '07, '08]

□ Thermal phase diagram of MBQC

[Fujii, Nakata, Ohzeki & Murao' '13]

[Li et al. '11, Wei, Li & Kwek '14]

Deformed AKLT models & transition in QC power

[Darmawan, Brennen & Bartlett '12, Huang & Wei '16]

Verifiable blind QC

[Hayashi & Morimae '15]

Open problems

- Complete characterization of all universal resource states?
 - Even for AKLT family?

□ Universal resource in an entire SPT phase?

Even for just 1D SPT phase and arbitrary 1-qubit gate?

□ Deeper connection of topological QC to MBQC?