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Einstein’s General Relativity is incomplete because

e It predicts that gravitational collapse , both at the Big Bang and

inside black holes, brings about spacetime singularities as at which
the theory breaks down

e It gives no account of ‘matter 'as opposed to geometry , and in
particular the nature of classical ‘particles ’

e It is incompatible with quantum mechanics



Singularities

First discovered in Friedmann-Lemaitre models, it was shown by
Roger Penrose(1965) that these arise if closed trapped surfaces occur
during gravitational collapse and work by Geroch , Hawking and Pen-
rose showed that as long as matter satisfies various positive energy
conditions, then spacetime singularities are inevitable in the future of
certain types of Cauchy data.

Thus unlike classical Yang-Mills theory * and scalar fields theories with
renormalizable potentials, Leibniz-Laplace Determinism breaks down
for General Relativity. It can at best be an effective theory.

*or possibly Born-Infeld theory



The area of a closed trapped 2-surface
decreases in both the inward and the out-
ward directions if pushed to the future
along its two lightlike normals




These theorems also apply to classical supergravity theories in all rel-
evant dimensions since the matter fields satisfy the energy conditions.
If supermatter is added, then only if potentials for scalars are posi-
tive (which cannot happen for pure supergravity) could singularities
conceivably be avoided. However one may also truncate to the pure
gravity sector and we are back to the same problem.

The same problem arises in String Theory in the zero slope limit. Only
higher curvature terms could could conceivably evade the problem.



The Strong Energy Condition

Top+ 2 T7 >0 (1)

is the most important energy condition (‘Gravity is attractive*)
It can only fail if potentials for scalars are positive.

Unless it fails, cosmic acceleration (e.g. a positive cosmological con-
stant, A > 0, is impossible)

Thus there can be no inflation in pure supergravity theories, or the
zero slope limit of String theory.*

*except in models with time-dependent extra dimensions which have other problems



Einstein was also concerned about the breakdown of classical theory
near point particles such as Maxwellian Linear Electrodynamics cou-
pled to classical point particles. The self-force diverges, as does the
total energy.
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An attractive idea, pioneered by Mie and later refined by Born and
Infeld was Non-Linear Electrodynamics
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However this is not source-free, it has a delta-function source at the
origin where the field equations are violated.

For want of a better word I call this a Blon.



More acceptable to Einstein would be solutions of the classical field
equations which are of finite total energy and which are everywhere
smooth and singularity free,without sources. Nowadays we would call
these Soliton, or ‘classical lumps’.

The best known example is the 't Hooft-Polyakov monopole of Yang-
Mills-Higgs theory.

We now believe that quantum field theories may admit two types of
particle, perturbative particles, described approximately by the Klein-
Gordon, Dirac or Proca equations, and non-perturbative particles or
solitons described approximately by classical field theory.

In exceptional theories, such as supersymmetric theories, there may
be a symmetry or duality between these two types of particles, for
example in N =4 SUSY Yang-Mills Theory.



Einstein was especially concerned about the gravitational field of point
particles, whose exterior metric was obtained by Schwarzschild
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This diverges both at »r = 0 and »r = 2M. The former is a space-
time singularity, much much worse than a delta-function, the latter a
coordinate artifact due to an event horizon.



Serini, Einstein Pauli and Lichnerowicz were able to show that there
are no static or stationary soliton like solutions of the vacuum Einstein
equations without horizons.

The presence of an horizon implies a singularity.

These results extend straightforwardly to include the sort of matter
encountered in ungauged supergravity theories and Klauza-Klein the-
ory* or the zero slope limits of String Theory. They follow essentially
because these theories do not admit a length scale: rigid dilation

Guv — N2 guu A constant, (8)

IS a symmetry of the equations of motion.

*with the proviso that the fields in four dimensions are regular, see later



Einstein and Rosen realised that a key to understanding the Schwarzschild
source was the existnce of what we now call an Einstein-Rosen bridge
or wormhole connecting two asymptotically flat regions.

In isotropic coordinates
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Only later, with the work of Szekeres , Kruskal, Finklestein etc did the
full complexity of the maximal analytic continutation of the Schwarzschild
solution become clear. This shows that the singularity, which is space-
like rather than timelike as one might have suspected is still present.
However it does not lie on a surface of constant ¢. It lives on R? x S?
with metric
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The surfaces of constant r» are hyperbolae UV = constant.

The two static exterior regions have UV < 0O

The future and past time-dependent regions inside the horizon ahve
Uv >0

The surfaces of constant time are straight lines through the origin
U = constant V.

The region UV > 0 contains closed trapped 2-spheres, whose null
normals are U = constant, and V = constant.

The past and future singularities are inside the horizon at UV = 1.



The no-go-theorems of Serini, Einstein, Pauli and Lichnerowicz were
extended to unigueness or no hair theorems by Israel, Robinson ,
Carter and Hawking etc to show that the final state of gravitational
collapse is given by by a member of the Kerr-Newman family of met-
rics which are complete specified once one has given the total mass
M, angular momentum J and electric and magnetic charges Q and P
subject to the constraint

MZ%\/Q2+P2+\/4J2+Q2+P2. (13)

This inequality ensures that the singularities and sources of the sta-
tionary solutions are hidden inside an event horizon. The conjecture
that they are always so hidden, even in dynamic situations, is called
Cosmic Censorship.



The current status, and indeed precise formulation, of the Cosmic
Censorship Conjecture in classical General Relativity remains unclear.
It does seem however that it can fail in certain, rather special cir-
cumstances( massless scalar field). .Thus at the very least, the word

must be included. It certainly seems to be true for an open
set in the space of all Cauchy Data.

The same uncertainty still clouds the nature of the spacetime sin-
gularities. However recent work is compatible with the idea that the
chaotic, oscillatory, Mixmaster type singularities of the type suggested
by Belinsky Lifshitz and Khalitnikov arise from an open set of Cauchy
data.



A striking feature of the classical mechanics of black holes are analo-
gies to the laws of thermodynamics. One may associate with every
stationary solution a surface area A, surface gravity x, angular velocity

€2 and electric and magnetic potentials ¥ and x. One has

k,$2,0,x, are constant on the horizon
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In @ quasi stationary process

dA > 0
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cannot be reduced to zero by a finite process

(15)
(16)

(17)



The surface gravity k is defined by
P1% = Kl*, (18)

and measures the extent to which the null generators [¢, [¢l, = O of
the horizon fail to be affinely parameterised

U = exp ku (19)

U is Kruskal time, valid near the horizon. u is Eddington- Finkelstein
time (same as Killing time) , valid near infinity.

U=T—-R" u=t-—r", (20)

'r*=r—|—2Mln(ﬁ—1). (21)



The formal similarity between temperature and surface gravity and
entropy and area suggested to Bekenstein among others an extension

of thermodynamics to black holes

S x A.

(22)

The identification was clinched and the factor of proportionality fixed
by Hawking’'s work on particle creation in the neighbourhood of hori-
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Hawking's calculation used Free Quantum Field Theory in Fixed
Curved Spacetime background (FQFTICS).



It rests on an assumption about positive frequency during gravitational
collapse. Hawking argued that gravitational collapse brings about a
quantum state with no ‘particles’defined using the Kruskal coordinate
U. It follows that there is a thermal distribution of particles defined
using the Eddington-Finkelstein coordinate w.

To see this, Fourier transform
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Hartle and Hawking extended this argument to establish the Einstein
A and B coefficient relations for the spontaneous and induced emis-
sion rates, making use of the periodicity of the formula relating u
and U in imaginary times. Gibbons and Perry pointed out that one
this periodicity implied that the Green’'s functions for a black hole in
equilibrium with its products must be Thermal Green's functions with
periodicity in imaginary time given by
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This shows that Hawking's result remains true for Interacting Quan-
tum Field theory in Curved Spacetime (ICFTICS).

B=T"1= (26)




Gibbons and Hawking extended this idea to Semi-Classical Quantum
Gravity (SCQG) by considering a path integral over Riemannian met-
rics which are periodic in imaginary time
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IS the classical Euclidean action and & is the thermodynamic potential

d=M-TS - QJ —9Q (29)



At the lowest semi-classical level, the Riemannian Black Hole solu-
tion gives the saddle point and one obtains what may be called the
Quantum Statistical Relation
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These calculations may be extended (De Wit, Dabholkar,Sen,... ) to
include higher curvature terms in the action, such as arise at higher
order in o' in String theory, provided that one uses an expression for
the black hole entropy in due to Wald. In general however, to control
quantum fluctuations, one should presumably go to higher order in
string loops, i.e. in powers of gs = e?.

One may avoid doing this for special supersymmetric, zero tempera-
ture, extreme or BPS black holes.

Another problem is the nature of the perfectly diathermic box box
in which the black hole must be contained. One possibility is to use
special the properties of Anti-De-Sitter spacetime.

Both ideas are essential components of our current theoretical under-
standing of black holes in M/String theory.



Although they may be stable classically, Hawking's results imply that
black holes are unstable quantum-mechanically because they may emit
gravitons, photons etc which carry of energy and angular momentum,
leading to well known uncertainties about the nature of the final state.

*

In the charged case the mechanism is the Schwinger process. This is
energetically favourable if

@ >m super — radiant condition (33)
"+
And rapid if
2
Cg > = tunneling condition (34)
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*Wovon man nicht sprechen kann, daruber muB man schweigen



2E=ry + < (35)



In the charged case however it may be that no physical field carries
the relevant charge * in which case the evolution is towards the black

hole with least mass for fixed charge. This has M = |Q| = |Z|, zero
temperature and will non-longer radiate.
1 M2 N2
T \/ “ (36)
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*or is to massive



Gibbons and Hajicek realised that Extreme-Reissner Nordstrom Black
holes are the solitons of Einstein’s theory.
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Earlier Hartle and Hawking pointed out that Majumdar and Papa-
petrou had discovered that Reissner-Norstrgm black holes satisfy a
No Force Condition
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In isotropic coordinates, in the sub-extreme case, the metric is
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We get two regions joined by an Einstein-Rosen bridge.



In the extreme case, M = |Z|, things are different.

There is just one sheet, with an infinitely long throat which asymp-
totes the homogenous Bertotti-Robinson product metric on SQXAdSQ.

In fact Couch and Torrence found an involution

M2
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which interchanges the horizon and infinity conformally *
M4
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*Exactly the same structure arises in the case of the D3-brane



Einstein-Maxwell theory has a supersymmetric extension, N’ = 2 Su-
pergravity theory. Gibbons realised, that while finite temperature
black holes are not supersymmetric, the Majumdar-Papapetrou solu-
tions admit a Killing spinor

1. .
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Thus the charge Z was a central charge and that the Cosmic Cen-
sorship inequality is a Bogomlonyi Bound

M > |Z], (48)

with equality if and only if the solution admits a Killing spinor Gibbons
and Hull established this in detail using a Witten-Nester argument.
and Tod completed the task of finding all supersymmetric solutions
of this theory.



The basic idea, which generalises some in sights of Olive and Witten
about solitons in flat space time

{Q", Q7} = yuPHsY + ZYC + . .. (49)
extends to all supergravity theories in all dimensions and to p-branes,
extended p-dimensional objects.

Rather generally, it is believed that the associated BPS states suffer
no quantum corrections and hence semi-classical calculations of such
things as entropy should be reliable.

An important fact is that Newton's constant G does not enter in the
relation between entropy S and charge Q.

S = Q2. (50)



By suitably changing the boundary conditions used in open string
theory, Polchinksi was able to make contact with 2-dimensional con-
formal field theory and string theory. The equivalent of the soliton
states are Dirichlet branes. If gravity is negligible, they have a low
energy description using a Dirac-Born-Infeld Lagrangian.

The non-perturbative Ramond-Ramond charges carried by the D-
branes are not carried by elementary strings states. They resemble
Wheeler's Charge without Charge and are absolutely conserved and
central.

Gibbons and Callan and Maldacena showed that if a string ends on a
3-brane it looks, from the standpoint of those living on the brane, like
a Blon, an idea which had been partially anticipated in the nineteenth
century but which may not have appealed to Einstein.



The development of D-brane theory allowed Strominger and Vafa to
give a microscopic description of certain BPS black holes in terms of
the intersection of various D-branes. Microstates could be counted
and Boltzmann's formula verified.

S=InN. (51)



This is meaningful because

e Quantum corrections are under control because we are dealing
with BPS states and so we may extrapolate from microstates
to macroscopic black branes described by classical supergravity
theory.

e The (Ramond-Ramond) charges @Q, P are quantised because we
demand consistent string propagation in these backgrounds.The
charges of solitons in ungauged supergravity theories need not
carry quantised charges.

Einstein would probably not have approved of this.



The situation improves if one considers the Kaluza-Klein monopoles
of Gross Perry and Sorkin.

ds® = dt° + V1({dz® + wdzh)? + Vdx?, (52)
gradV = curlw (53)
V = 14 (54)
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Periodicity of z° imposes a quantisation condition on the Klauza-Klein
charges and on the magnetic monopole moment.

In addition, the singularies of the four-dimensional metric receive a
Higher Dimensional Resolution: they are mere coordinate artefacts in
five dimensions. In this way, they evade the Pauli-Einstein theorem.



Gibbons, Horowitz and Townsend have shown that higher dimensional
resolutions are quite common. However the problem of singularities
and the ultimate outcome of gravitational collapse and Hawking evap-
oration cannot be solved in this way.

e One should consider the interior as well as the exterior of eternal
BPS black holes. Israel’s ideas of Mass Inflation may be relevant
here.

e One should also consider neutral black holes, made out of just
gravitons say. These cannot be BPS. Our best current hope
of understanding them at present seems to be via Maldacena’s
AdS/CFT correspondence.



As pointed out by Gibbons and Townsend, Anti-Sitter spacetime fre-
quently arises as the near horizon geometry of classical p-brane met-
rics. According to D-brane theory N coincident D-branes have a
non-abelian version of the SU(N) Born-Infeld action on their world
volume. Maldacena argued in the D3-brane case that

String theory in the bulk of AdSg =N = 4 SU(N) Yang — Mills on the confor
(55)

In the N — oo limit we relate back holes in supergravity to the large
coupling limit of quantum mechanical Yang-Mills gauge theory. Since
this is believed to be well defined, one suspects that there should be
no singularities in the bulk, at least at the quantum level.



Much remains to be done to check this idea.

A remarkable application is due to Witten in which he relates the
Hawking Page Black Hole phase Transition in the bulk to quark con-
finement on the boundary.

Thus vindicating the use of Euclidean techniques and the sudy of
Higher Dimensional in Quantum Gravity.
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The solution with bigger radius and smaller temperature has lower

Euclidean action IEuclidean than A4S: provided
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the AdS,, Bekenstein Bound
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IS saturated at the Hawking-Page transition.
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Conclusion

e T he problem of the final state gravitational collapse is still far
from being fully understood.

e Recent mathematical advances have justified much of what was
merely conjecture on the classical side of things. We can expect
more progess on this front in the near future.

e On quantum side, we now understand how certain supersymmetric
black holes may be understood as non-perturbative solitons in
String/M-theory and we can count micro-states.



e The AdS/CFT corresponence encourages the view that neutral,
non-supersymmetric black holes evolve in a non-singular unitary
fashion at the quantum level but much needs to be done to flesh
out this idea, and indeed even to construct a consistent quantum
theory of gravity.



