Strings and Black Holes

Erik Verlinde

Institute for Theoretical Physics University of Amsterdam

General Relativity

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Gravity = **geometry**

Einstein: geometry => physics

Strings: physics => geometry

A Brief History of Black Holes

1916 Schwarzschild solution.

Einstein: "I had not expected that the exact solution to the problem could be formulated. Your analytical treatment to the problem appears to me splendid."

Oppenheimer-Volkov

• 1939 Gravitational collapse: "frozen" or "black" stars.

• 1959~ Global structure, exact solutions. Kruskal, Kerr, Newman

1967 "Black hole" singularity theorems. Penrose-Hawking

• 1975 Black hole thermodynamics. Bekenstein-Hawking

• 1994 Holographic principle. 't Hooft- Susskind

. 1996 Microscopic origin of entropy. Strominger-Vafa

A Brief History of String Theory

• 1968	Veneziano amplitude, dual models Nambu-Goto
• 1971	Neveu-Schwarz-Ramond Bosonic and fermionic string theory
4070	Scherk-Schwarz
• 1976	Superstrings as theory of quantum gravity
• 1984	Anomaly cancellation, heterotic strings Green-Schwarz
• 1995	String dualities, D-branes Witten, Polchinski
• 1996	Microscopic origin of black hole entropy Strominger-Vafa
• 1997	AdS-CFT correspondence and holography. Maldacena

Outline

Black Holes

- Hawking Radiation
- Information Paradox
- The Holographic Principle

Black Holes in String Theory

- Strings and D-branes
- Microscopic Origin of Black Hole Entropy
- Holography in String Theory

Hawking Radiation

Black Holes emit thermal radiation with temperature

Hawking 1975

$$T = \frac{\hbar c^3}{8\pi kGM}$$

Bekenstein-Hawking Entropy

$$S = \frac{cA}{4\hbar G}, \qquad A = 4\pi R^2$$

What is the origin of this entropy?

Black Hole Thermodynamics

Charged Black Holes:

Reisner-Nordstrom

$$ds^{2} = -H(r)dt^{2} + \frac{dr^{2}}{H(r)} + r^{2}d\Omega^{2}$$

$$H(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \longrightarrow \left(1 - \frac{Q}{r}\right)^2$$

Inner and outer horizon

$$r_{\pm} = M \pm \sqrt{M^2 - Q^2}$$

Extremal Black Holes

$$M = Q$$

Electric Potential, Entropy and Temperature

$$\Phi = \frac{Q^2}{r_+^2}$$

$$S = \pi r_{+}^{2}$$

$$\Phi = \frac{Q^2}{r_{\perp}^2} \qquad S = \pi r_{\perp}^2 \qquad T = \frac{1}{4\pi r_{\perp}^2} (r_{\perp} - r_{\perp})$$

obey the first law of thermodynamics

$$T \rightarrow 0$$

$$TdS = dM + \Phi dQ + \Omega dJ$$

Einstein equation as equation of state

Ted Jacobson

Raychaudhuri equation (no shear or vorticity)

$$\frac{d\theta}{d\lambda} = -\frac{1}{2}\theta^2 - R_{\mu\nu}k^{\mu}k^{\nu}$$

$$\theta = k^{\mu}_{;\mu}$$

$$\theta = k^{\mu}_{;\mu}$$

$$k^{\mu}k_{\mu} = 0$$

can be integrated using the Einstein equation

$$\frac{1}{8\pi G}\theta = \lambda T_{\mu\nu}k^{\mu}k^{\nu} + O(\lambda^2)$$

$$Tds = \rho$$

The Information Paradox (early '90's)

The Holographic Principle (1994)

't Hooft Susskind

Planck Area

$$\# S \text{ tates} = \exp \frac{A}{4G}$$

Strings, D-branes and Gravity

Open strings: gauge interactions

$$A_{\mu}$$
, X^{I}

Closed strings: gravity

$$g_{\mu\nu}, B_{\mu\nu}, \Phi$$

D-branes: gauge theory on worldvolume.

source for gravity:

gravity induced by open string loops

D-branes as Black Holes

D-branes wrap certain "cycles" inside compactification manifold. They become charged massive objects: (extremal) black holes.

Their world-volume theory gives a microcopic description of the states associated with the black holes.

$$ds^{2} = -\frac{1}{H(r)}dt^{2} + H(r)\left(dr^{2} + r^{2}d\Omega^{2}\right)$$

$$H(r) = \left(1 + \frac{Q}{r}\right)^2 \qquad Q = \phi^i Q_i$$

Microscopic Origin of Entropy

Excited string states have high degeneracy

$$M^2 = N\ell_s^{-2}$$
 #states $\approx \exp \pi \sqrt{cN}$

But not enough to explain black hole entropy

$$\exp \pi M \ell_s \ \Box \ \exp \pi M^2 \ell_p^2$$

For extremal black holes

$$\#$$
states $\approx \exp \pi Q^2$

D-brane described microscopically by "gas of strings" with

$$c = Q^2 \qquad \qquad N = Q^2$$

Exact counting

Extremal "dyonic" black holes:

$$S(Q, P) = \frac{A}{4} = \pi \sqrt{P^2 Q^2}$$
 $S(Q, P) = \log D(Q^2, P^2)$

Generating function:

$$\sum_{N,M} D(N,M) e^{-tN-sM} = \prod_{n,m} \left(1 - e^{-nt-ms}\right)^{-c(nm)}$$

with:

$$\sum_{n} c(N)q^{N} = \prod_{n} \left(\frac{1+q^{n}}{1-q^{n}}\right)^{4}$$

AdS/CFT Correspondence

Anti-de Sitter- Conformal FieldTheory

Near horizon geometry of a D3-brane

AdS black hole = thermal CFT

$$ds^{2} = -H(r)dt^{2} + \frac{dr^{2}}{H(r)} + r^{2}d\Omega^{2}$$

Strings on $AdS_5 \times S^5$

= dual to a CFT: N=4 SuperYang-Mills

$$Z_{CFT}(g,\phi) = Z_{string}(g,\phi)$$

4D Attractor Black Holes and Entropy

Semiclassical entropy

$$S(Q,P) = \left[X^{\Lambda}\overline{F}_{,\Lambda} - \overline{X}^{\Lambda}F_{,\Lambda}\right]_{Q,P}$$

$$\operatorname{Re}(X^{\Lambda}) = Q^{\Lambda}$$

$$\operatorname{Re}(F_{\Lambda}) = P_{\Lambda}$$

$$\Omega(P,Q) = \int d\Phi \overline{\Psi}_{P,Q}(\Phi) \Psi_{P,Q}(\Phi)$$

Ooguri, Strominger, Vafa

$$\Psi_{P,Q}(\Phi) = e^{i\Phi P} \Psi(Q + \Phi)$$

$$F(Q,\Phi) = 2\operatorname{Im} F(Q + \frac{i}{2}\Phi)$$

$$S(Q, P) = \log D(Q, P)$$

Mixed partition function factorizes as

$$\sum_{n} \Omega(Q, P) e^{-P\Phi} = \left| \Psi(Q + i\Phi) \right|^{2} \qquad \Psi(X) = \exp iF(X)$$

The Entropic Principle

Flux Vacua

Moduli fixed by fluxes : discrete points.

Flux Wave Functions

- Flux vacua as wave functions on moduli space
- Relative probability determined by entropy

$$\langle \overline{\Psi}_{P,Q} | \Psi_{P,Q} \rangle \approx \exp S(P,Q)$$

Entropic Principle

