Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

Kenzo NAKAMURA KEK

C.N. Yang Institute for Theoretical Physics Conference "Neutrinos and Implications for Physics Beyond the Standard Model" October 11-13, 2002 SUNY

3 Generations of Kamioka Nucleon Decay Experiments

	Kamiokande	Super-Kamiokande	Hyper-Kamiokande
Mass	3,000 t (+1,500 t)	50,000 t	1,000,000 t
Photosensitive Coverage	20 %	40 % (SK-1)	?
Observation Started	1983	1996	?
Cost (Oku-Yen)*	5	100	400 - 500?**

* 1 Oku-Yen ≈ 1M\$
** Target cost; No realistic estimate yet

Hyper-Kamiokande: A Multi Purpose Detector

- Proton decay
 - ✓ ν K⁺ Reach: $\tau_p(\nu K^+)/B \sim 10^{34}$ yr ✓ e⁺ π⁰ $\tau_p(e^+ π^0)/B \sim 10^{35}$ yr
 - ✓ e⁺ π⁰
 $\tau_p(e^+π^0)/B \sim 10^{35}$ yr
 ✓ and other modes

- Common topics to Hyper-K and UNO \rightarrow N ext talk
- Supernova neutrino (~10⁵ neutrinos for a SN at the center of the galaxy.)
- JHF-Kamioka long baseline neutrino oscillation experiment:
 - \checkmark 2nd phase, CP violation
 - ✓ If the θ_{13} measurement in the 1st phase gives only an upper limit, the 2nd phase will enhance the reach.

Why water Cherenkov?

The primary reason for Super-Kamiokande to have been successful is that it is only one order of magnitude extension of the well-proven Kamiokande.

One order of magnitude extension of well-proven Super-Kamiokande will not cause any serious difficulty both in construction and in operation. (We now know how to avoid an accident caused by the implosion of a PMT under water pressure.)

■Water is the cheapest detector material.

Overview of the JHF-to-Kamioka Experiment

2nd Phase

•proton decay

•CPV

• $\nu\mu \rightarrow \nu x$ disappearance • $\nu_{\mu} \rightarrow \nu e$ appearance •NC measurement

$sin^2 \, 2\theta_{13}$ from ν_e Appearance (JHF ν 1st Phase)

Off axis 2 deg, 5 years

ain220		Back	Signal	Signal +			
SIN ² 20 ₁₃	ν_{μ}	ν _e	$\overline{\mathbf{v}}_{\mu}$	\overline{v}_{e}	total	Signal	BG
0.1	12.0	10.7	1.7	0.5	24.9	114.6	139.5
0.01	12.0	10.7	1.7	0.5	24.9	11.5	36.4

Sensitivity to $\sin^2 2\theta_{13}$ as a function of exposure

JHF-Kamioka Neutrino Project: Phase-II

Sensitivity (3 σ) to CPV (JHF $_{\rm V}$ 2nd Phase)

Conceptual Design

Fiducial / Total

Fiducial volume: $39m\phi \times 45m \times 10$ sections = 0.54 Mton

Total Inner detector volume: $43m\phi \times 49m \times 10$ sections = 0.72 Mton

Total detector volume: 1 Mton

Total number of PMTs: 200,000 (if 2/m²)

Wished Construction Plan

Any other way to start Hyper-K earlier?

2 Detector Hyper-Kamiokande ?

2 detectors \times 48m \times 50m \times 250m, Total mass = 1 Mton

Wished Construction Plan (2 Detector Hyper-K)

R&D Items

- Site selection
- Cavity design and assessment
 - Rock stress analysis
 - Cost analysis, optimization
- Detector tank design and study of construction method Simulation studies for
 - - Proton decay
 - ✓ K⁺ν
 - ✓ e⁺p⁰

- How to improve S/N Optimize photocathode coverage
- Long baseline neutrino oscillation experiment
- Development of new photo-detectors
 - **PMT**?
 - ✓ Larger size? ✓ High QE?

 \checkmark Flat & thin?

- - Initially some R&D, but no more after the SK accident Not very successful Not very active

- ✓
- Other technique?
- 🛑 Not active

Plan to Develop 40-inch PMT Was Given up due to the SK Accident

品名	有効面	Dynode構造	段数	TTS(FWHM)	Rise	Fall	P/V比
				(nsec)	(nsec)	(nsec)	
R3600(20")	¢ 500mm	ベネチアン	11	6	10	33	1.7
100cm(40inch)径PMT	ф 980mm	Line	10	予想值 6.97	予想值 15.8	予想值 36	予想值2.5以上

大口径PMT R3600 vs 超大径PMT

Mozumi Mine

Tochibora Mine

Decay Pipe Common for SK/HK

Finite Element Analysis of the Hyper-K Cavity Using the Onsite Rock Condition

 $\frac{presure (horizontal)}{presure (vertical)} = 0.45$

15

= 1.0

Need more detailed studies.

Design of PMT Support Structure

Construction Plan for the Water Tank and PMT Support Frame

Development of Large Spherical Hybrid Photo Detectors (HPD)

5-inch HPD Prototype Tested

electron bombarded gain $1000 \times avalanche gain 50 = 50,000$

Characteristics of 5-inch HPD Prototype (1)

size	5inch		
Effective area	80mm ø		Due to non-spherical glass bulb and small(3mm) APD
QE@400nm	24(%)		
Rise time	3.2ns @-	-8kV	~10ns@Super-K
Fall time	5.2ns @-	-8kV	~16ns@Super-K
Dark rate	24000Hz 8500Hz 380Hz		First measurement(~3000Hz@Super-K) paint a conductor of electricity (outside of photo-sensitive area) paint wholly a conductor
Avalanche gain	50		Bias 150V
HV value	-8kV	-16kV	
Bombarded gain	1000	3000	300/kV at >-8kV
Total gain	5x10 ⁴	1.5x10 ⁵	10 ⁷ @Super-K
P/V		20.5	~2@Super-K

- Site: Tochibora mine is seriously considered as a candidate site.
- Cavity excavation: FEA in progress. Geological survey to be done; boring, *in situ* measurement of initial stress, rock sample taken from the candidate site for mechanical tests, etc.
- Water tank and PMT support: Conceptual design started.
- Spherical HPD: 5-inch prototype tested, larger HPD to be developed.
- Further physics simulation: to be done.