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Introduction

An important non-perturbative feature of string theory or M -theory compactifications which pre-
serve only N = 1 supersymmetry in four dimensions is that fundamental string worldsheet or
brane instantons can sometimes generate an effective superpotential for the light chiral superfields
that describe the classical moduli of the background. Such a superpotential drastically alters the
low-energy behavior of the theory, since some or all of the branches of the classical moduli space
can be lifted.

As a concrete example, I consider today perturbative heterotic compactification on a Calabi-Yau
threefold X with a stable holomorphic gauge bundle V . In this case, the classical moduli to consider
are those which describe the complexified Kähler class of X and the complex structure of X and
V . As was first shown in this context by Dine, Seiberg, Wen, and Witten [1], a fundamental string
worldsheet that wraps a smooth, isolated rational curve C in X can generate a superpotential for
these moduli.

Schematically, the superpotential WC generated by a worldsheet instanton wrapping C takes the
form

WC = exp

(

−
A(C)

2πα′
+ i

∫

C

B

)

× (1-loop determinants) . (1)

Here A(C) is the area of C in the Calabi-Yau metric on X, and B is the heterotic B-field. Thus,
the argument of the exponential factor in WC is simply the classical action of a string worldsheet
wrapped once about C. Beyond tree-level, WC is also weighted by a product of one-loop determi-
nants that arise from integrating out the fluctuating modes of worldvolume bosons and fermions
on C. (For now, I leave the one-loop factors implicit in WC .) Because C is a holomorphic curve,

∗This talk is based on joint work with Edward Witten.
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its area A(C) is given by the integral of the Kähler form over C, so that WC depends explicitly on
the complexified Kähler class of X. In general, the one-loop determinants in WC also depend on
the complex structure moduli of X and V .

The schematic formula (1) exhibits the superpotential contribution from only a single curve C in
X. To compute the full superpotential, we must sum the contributions from all such curves in X.
So again schematically,

W =
∑

C⊂X

WC . (2)

Because X may contain thousands of rational curves, the direct evaluation of this instanton sum
is generally a herculean task. If we are less ambitious, we can ask simply whether W is non-zero.
Yet even this question is non-trivial!

To answer this question, one might naively argue that the superpotential contributions from indi-
vidual curves in X are generic, so their sum in (2) is generically non-zero. However, such reasoning
neglects the fact that the summand WC depends holomorphically on the moduli of X and V , and
arguments based on the “generiticity” of holomorphic quantities are dangerous. In fact, for the
case in which X and V have a simple linear sigma model worldsheet description, a non-trivial
cancellation occurs in the sum in (2), and the superpotential actually vanishes [2, 3, 4].

Nonetheless, one heuristic reason to think that string worldsheet and brane instantons often gener-
ate a superpotential in N = 1 compactifications is that an analogous phenomenon already occurs in
the much simpler context of four-dimensional supersymmetric gauge theory. As shown by Affleck,
Dine, and Seiberg [5], instantons in supersymmetric QCD (or SQCD) with gauge group SU(Nc)
and with Nf = Nc − 1 flavors1 generate a superpotential that completely lifts the classical moduli
space of supersymmetric vacua of that theory.

Besides providing a sterling example of an instanton-generated superpotential, SQCD also provides
an example of a class of more subtle instanton effects whose stringy analogues have not been much
considered. The most prominent such effect occurs in SQCD with Nf = Nc flavors. As shown by
Seiberg [6], instantons in this theory do not generate a superpotential, but they nonetheless deform
the complex structure of the classical moduli space. This quantum deformation is not so drastic as
to lift any branches of the classical moduli space, but it instead smooths away a classical singularity
at the origin of moduli space.

The exotic instanton effect in SQCD with Nf = Nc flavors raises an immediate question about
analogous phenomena in string theory. Namely, can worldsheet or brane instantons which do not

generate a superpotential nonetheless generate a quantum deformation of the moduli space? If so,
what form can this deformation take? These questions are the ones I will discuss in the remainder
of my talk.

1We recall that a flavor is a massless chiral multiplet transforming in the sum of the fundamental and the anti-

fundamental representations of the gauge group.
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A Brief Sketch of the Main Idea

Before I discuss details, let me sketch the main idea. As I recall in moment, a quantum deformation
of the classical moduli space Mcl is intrinsically described by an F -term correction to the effective
action of the general form

δS =

∫

d4x d2θ ωi j Dα̇Φi D
α̇
Φj . (3)

Here Dα̇ is the usual spinor covariant derivative on superspace, and ω is a tensor on Mcl that
represents the deformation. Among other terms, the interaction (3) leads in components to an
effective four-fermion vertex, and for this reason I refer to (3) as a “multi-fermion F -term”.

If we seek worldsheet instantons that can generate a deformation of the classical moduli space Mcl,
then we must consider worldsheet instantons that can generate the multi-fermion F -term in (3).
Now in any instanton computation, the form of the effective operator generated by the instanton
is largely determined by the structure of fermion zero-modes in the instanton background. For
example, to generate a superpotential, the instanton must carry at least (and in the simplest case,
precisely) two fermion zero-modes to generate the fermionic part of the chiral superspace measure
d4x d2θ. In contrast, to generate the correction (3), the instanton must carry at least four fermion
zero-modes: two zero-modes to generate the measure d2θ and two zero-modes to generate the

fermionic superfields Dα̇Φi D
α̇
Φj that appear in the operator itself.

In the case that C is an isolated rational curve in X, a worldsheet instanton wrapping C carries
precisely two physical fermion zero-modes and hence naturally contributes to a superpotential. To
discuss instantons which carry additional zero-modes, and which can thus generate multi-fermion
F -terms as in (3), we simply relax our assumptions that C is isolated as a holomorphic curve in
X and that C has genus zero. In either case, C carries extra fermion zero-modes and naturally
contributes to higher F -terms than the superpotential.

Today I will focus on the particular case of worldsheet instantons that generate the multi-fermion
F -term in (3) which describes a quantum deformation of the moduli space. As I explain, this effect
arises naturally from a one-parameter holomorphic family of rational curves in X. For a complemen-
tary discussion of multi-fermion F -terms in the context of heterotic Calabi-Yau compactification,
see [7].

General Remarks on Multi-Fermion F -terms

To start, I recall some essential properties of multi-fermion F -terms and how they are associated
to deformations of the complex structure of the moduli space. This review follows Section 2 of [8],
and for simplicity I consider only theories with global (as opposed to local) supersymmetry.

To motivate the study of multi-fermion F -terms in the effective action, let us begin by considering
how to describe physically the infinitesimal deformation of some classical moduli space Mcl to
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a quantum moduli space M. Abstractly, the classical effective action associated to motion on
Mcl is a four-dimensional, N = 1 supersymmetric nonlinear sigma model which describes maps
Φ : R

4 −→ Mcl. This sigma model is governed by the usual action,

S =

∫

d4x d4θ K
(

Φi,Φi
)

. (4)

Here Φi and Φi are respectively chiral and anti-chiral superfields whose lowest bosonic components
describe local holomorphic and anti-holomorphic coordinates on Mcl, and K is the Kähler potential
associated to some Kähler metric ds2 = gii dφidφi on Mcl.

Similarly, the quantum effective action is also a nonlinear sigma model as above, but now with
target space M instead of Mcl. In principle, to pass from the sigma model with target Mcl to
target M, we must add a correction term δS to the classical effective action. So we ask — what
form does δS take?

In general, a deformation of the complex structure on Mcl can be described intrinsically as a change
in the ∂ operator on Mcl of the form

∂j 7−→ ∂j + ωj
i ∂i . (5)

Here ωj
i is a representative of a Dolbeault cohomology class in H 1

∂
(Mcl, TMcl), whose elements

parametrize infinitesimal deformations of Mcl. We use standard notation, with TMcl and Ω1
Mcl

denoting the holomorphic tangent and cotangent bundles of Mcl.

We can equally well represent the change (5) in the ∂ operator on Mcl as a change in the dual
basis of holomorphic one-forms dφi,

dφi 7−→ dφi − ωj
i dφj . (6)

As a result, under the deformation the metric on Mcl changes as

gii dφidφi 7−→ gii

(

dφi − ωj
i dφj

)

dφi , (7)

so that the metric picks up a component of type (0, 2) when written in the original holomorphic
and anti-holomorphic coordinates. (Of course, there is also a complex conjugate term of type (2,0)
which we suppress.)

Since we know how the metric on Mcl changes when Mcl is deformed, we can immediately deduce
the correction δS to the classical sigma model action. This correction takes the form of the F -term
in (3),

δS =

∫

d4x d2θ ωi j Dα̇Φi D
α̇
Φj + c.c. =

∫

d4x ωi j dφi dφj + · · · , (8)

- 4 -



Third Simons Workshop in Mathematics and Physics - SUNY at Stony Brook, July 25 - August 26, 2005

with

ωi j =
1

2

(

gii ωj
i + gij ωi

i
)

. (9)

Here Dα̇ is the usual spinor covariant derivative on superspace. We have also performed the
fermionic integral with respect to d2θ in (8), from which we see that the leading bosonic term
reproduces the correction to the metric in (7). As I mentioned earlier, other components of this
F -term (indicated by the ‘· · · ’ above) include a four-fermion, non-derivative interaction from which
the multi-fermion F -term takes its name.

Chirality and Cohomology

The multi-fermion F -term in (8) that describes the complex structure deformation of the moduli
space differs from the more familiar superpotential in two important ways.

First, the superpotential arises from a holomorphic function W (Φi) on Mcl and hence is manifestly
supersymmetric. In contrast, the multi-fermion F -term is not manifestly supersymmetric, since

the corresponding operator Oω = ωi j Dα̇Φi D
α̇
Φj is not manifestly chiral. Instead, the chirality

of Oω (in the on-shell supersymmetry algebra of the classical sigma model) follows from the fact
that the tensor ωj

i is annihilated by ∂.

Another important distinction between the multi-fermion F -term in (8) and the superpotential is
that, unlike a holomorphic function, the cohomology class in H 1

∂
(Mcl, TMcl) that actually deter-

mines the deformation is locally trivial. This fact implies that locally on Mcl, the multi-fermion
F -term δS can be integrated to a D-term, having the form

∫

d4θ (· · · ). However, because the co-
homology class represented by ω is globally non-trivial, we cannot write the correction δS globally
on Mcl as a D-term, and in this sense δS is an F -term.

Multi-Fermion F -terms of Higher Degree

The multi-fermion F -term in (8) that describes a deformation of the moduli space is only the first
in a series of multi-fermion F -terms that we can consider. To exhibit the generalization, we begin
with a section ω of Ω

p
Mcl

⊗Ω
p
Mcl

. (Were it not for the requirement of Lorentz-invariance, we could

more generally start with a section of Ω
p
Mcl

⊗ Ω
q
Mcl

for p 6= q.) Explicitly, ω is given by a tensor
ωi1···ip j

1
···jp

that is antisymmetric in the indices ik and jk. Given such a tensor, we construct a

possible term in the effective action that generalizes what we found in (8):

δS =

∫

d4x d2θ ωi1···ip j
1
···jp

(

Dα̇1
Φi1 D

α̇1Φj
1

)

· · ·
(

Dα̇pΦ
ip D

α̇p
Φ

jp

)

. (10)

Given the form of this operator, we can assume that ω is symmetric under the overall exchange of
i’s and j’s.

As explained in [8], the general multi-fermion F -terms of degree p > 1 have no effect on the classical
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algebraic geometry of the moduli space, and for this reason our primary interest lies in the F -term
of degree p = 1 associated to a deformation of the moduli space. See Section 2 of [8] for remarks
on the chirality and the cohomological interpretation of the operator in (10).

Worldsheet Instanton Computations

In the rest of my talk, I will sketch two worldsheet instanton computations. These computations can
be done in various ways, corresponding to the various descriptions (RNS, Green-Schwarz, hybrid) of
the fundamental string. I find it convenient to use a “physical gauge” formalism, which corresponds
to the Green-Schwarz description of the fundamental string after its inherent κ-symmetry is fixed.
Equivalently, the physical gauge formalism is the fundamental string analogue of the formalism
introduced by Becker, Becker, and Strominger [9] for general p-brane instanton computations. My
discussion follows [10], where the physical gauge formalism for worldsheet instanton computations
is introduced.

To illustrate this formalism, let us consider a worldsheet instanton which wraps a holomorphic
curve C smoothly embedded in C

2 × X, where for convenience we choose a complex structure on
the four Euclidean directions transverse to X. In physical gauge, C carries a set of four complex
bosons xµ and ym, for µ,m = 1, 2, which describe fluctuations normal to C in C

2 × X. As such,
the bosons xµ and ym are valued respectively in the bundles O2 and N , where O2 is the rank two
trivial bundle on C and where N is the holomorphic normal bundle to C in X.

We now consider the worldvolume fermions on C in physical gauge. If we work for simplicity
with the SO(32) heterotic string, then the left-moving current algebra on C is described by thirty-
two left-moving fermions λ which transform as sections of the bundle S−(TC) ⊗ V |C ≡ V−. Here
S−(TC) is a left-moving spin bundle on C, and we recall that V is the holomorphic gauge bundle
on X. By convention, the kinetic operator for these fermions is the ∂ operator on C coupled to the
bundle V−.

As for the right-moving worldvolume fermions on C, these fermions are naturally twisted and
transform as sections of the bundles below,

θα in S−(O2) ⊗O ,

θα
z in S−(O2) ⊗ Ω

1
C ,

χm
α̇ in S+(O2) ⊗ N . (11)

Here S±(O2) denotes the respective positive- or negative-chirality spin bundle associated to the
rank two trivial bundle O2 on C. We indicate the corresponding spinor indices by α and α̇. By
convention, the kinetic operator for a right-moving fermion on C is the ∂ operator coupled to the
appropriate bundle, so we naturally regard the fermions in (11) as transforming in anti-holomorphic

bundles on C. Thus, O is still the trivial line-bundle on C. Also, Ω
1
C is the bundle of (0, 1) forms

on C, indicated by the subscript z on θα
z . Finally, N is the anti-holomorphic normal bundle to C
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in X, indicated by the superscript m on χm
α̇ .

Let us count right-moving fermion zero-modes on C. These zero-modes arise from anti-holomorphic

sections of the anti-holomorphic bundles O, N , and Ω
1
C . By conjugation, such anti-holomorphic

sections are related to holomorphic sections of the holomorphic bundles O, N , and Ω1
C . So for

instance, we see that C always carries two fermion zero-modes arising from θα. These zero-modes
are Goldstone modes for the two supersymmetries broken by C, and they generate the chiral
measure d2θ in any instanton computation. If C has genus g, then the fermion θα

z similarly has
2g zero-modes. Finally, if we let p = dimC H0(C,N), so that C has p infinitesimal holomorphic
deformations inside X, then the fermion χm

α̇ has 2p zero-modes.

We now perform the worldsheet instanton computation in two special cases. First, we assume that
C is a smooth, isolated rational curve in X. In this case N = O(−1)⊕O(−1), so that g = p = 0 and
C carries precisely two fermion zero-modes. Hence C naturally contributes to the superpotential.

In the second case, we assume that C is a rational curve that moves in a one-parameter holomorphic
family in X, with normal bundle N = O ⊕O(−2). Hence g = 0 but p = 1, so that C carries four
fermion zero-modes and naturally generates a multi-fermion F -term as in (3).

Example: C is an isolated rational curve

We first evaluate the superpotential contribution from C in the case that C is an isolated, rational
curve. Evaluating the contribution from C to the superpotential is now admirably direct in the
physical gauge formalism. To determine the contribution from C to the low-energy effective action
— which amounts to integrating out the physical degrees of freedom on C — we merely evaluate
the worldvolume partition function. By standard reasons of holomorphy, any superpotential con-
tribution from C cannot have a non-trivial perturbative dependence on the string tension α ′, so we
need only evaluate this partition function to one-loop order. Hence the superpotential contribution
from C can be computed as an elementary Gaussian integral over the fluctuating, physical degrees
of freedom on the worldvolume.

With our previous description of the physical degrees of freedom on C, we can perform this Gaussian
integral immediately. We find that the F -term contribution to the effective action from C is given
formally by

δS =

∫

d4x d2θ WC , (12)

with

WC = exp

(

−
A(C)

2πα′
+ i

∫

C

B

)

Pfaff
(

∂V−

)

(

det′ ∂O

)2 (

det ∂O(−1)

)2 . (13)

In this expression, the chiral measure d4x d2θ on superspace arises as an integral over the collective
coordinates of the instanton. As in the introduction, we recognize the argument of the exponential
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factor in WC as the classical action of a worldsheet wrapped on C.

Beyond tree-level, the partition function receives contributions from the one-loop determinants of
the kinetic operators for the fluctuating modes on C. Because of the twisting of the right-moving
worldvolume fermions, the determinants associated to these fermions cancel the corresponding
determinants associated to the non-zero, right-moving modes of the bosons. Equivalently, this
cancellation is a consequence of the two residual supercharges preserved by C. So the non-trivial
determinantal factors appearing in WC arise only from the left-moving sector of the worldvolume
theory.

In the left-moving sector, the path integral over the SO(32) current algebra fermions is represented
by the Pfaffian factor in the numerator of WC , and the path integral over the non-zero, left-moving
modes of the worldvolume bosons is represented by the product of determinants in the denominator
of WC . In these expressions, ∂V−

, ∂O, and ∂O(−1) denote the respective ∂ operators on C coupled
to the corresponding holomorphic bundles. Because the bosons xµ valued in the trivial bundle O2

have zero-modes, we include a “prime” on the determinant of ∂O to indicate that this determinant
is to be computed with the zero-mode omitted; it otherwise vanishes.

Example: C is a rational curve that moves in a one-parameter holomorphic family

To discuss the case that C moves in a one-parameter holomorphic family, we consider the relatively
trivial case that the Calabi-Yau threefold X factorizes as X = E × Y , where E is an elliptic
curve and Y is a K3 surface. We also assume that the bundle V over X factorizes as the tensor
product of a flat bundle VE over E and a holomorphic bundle VY over Y . In this case, heterotic
compactification on X preserves N = 2 supersymmetry in four dimensions, and the moduli space is
now locally a product of a hypermultiplet moduli space MH associated to Y and a vector multiplet
moduli space associated to E.

We assume that the worldsheet instanton wraps a genus zero surface C inside Y . Supersymmetry
implies that C is actually a rational curve in some complex structure on Y , and in this complex
structure we have a trivial family of rational curves in X parametrized by E.

Because this example preserves N = 2 supersymmetry, a worldsheet instanton wrapping C cannot
generate a superpotential. However, it can generate a correction to the metric on hypermultiplet
moduli space MH . We again compute the instanton correction by evaluating the one-loop partition
function of the worldvolume theory on C. In complete analogy to our result for the superpotential,
we find

δS =

∫

d4x d2y d2θ d2χ ΨC , (14)

where

ΨC = exp

(

−
A(C)

2πα′
+ i

∫

C

B

)

Pfaff
(

∂V−

)

(

det′ ∂O

)3 (

det′ ∂O(−2)

)

. (15)
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Here d2y is the measure on the elliptic curve E induced from the background metric on E, and the
fermionic measure d2θ d2χ is the four-dimensional reduction of the six-dimensional chiral measure.
Finally, V− ≡ S− ⊗ VY |C , and because the normal bundle to C in X is now N = O ⊕O(−2), the
bosonic denominators in ΨC differ in the obvious way from the corresponding denominators in WC .

We now wish to exhibit δS in (14) as a multi-fermion F -term of the form (3). To this end, we
perform the bosonic integral over E and the fermionic integral with respect to d2χ.

The bosonic integral over E in (14) is trivial, since nothing in the integrand depends on E. This
integral produces a factor of the area of E, which is then reabsorbed when we rescale the four-
dimensional metric to Einstein frame. We note in passing that the modulus associated to the area of
E transforms in a vector multiplet, and any correction to the metric on the hypermultiplet moduli
space cannot depend on the vector multiplets.

In contrast to the bosonic integral over E, the fermionic integral with respect to d2χ is quite
interesting. From the perspective of a perturbative worldvolume computation, the latter integral is
the integral over the zero-modes of the worldvolume fermions χm

α̇ tangent to E, so performing this
integral implicitly reveals how the fermionic zero-modes associated to the family are “soaked up” in
worldvolume perturbation theory. Of course, at this point we could perform such an analysis directly
by considering the various interaction terms involving χm

α̇ in the worldvolume Green-Schwarz action.
However, a much more elegant approach is to use the structure of N = 2 supersymmetry present
in this example.

We now make the simplifying assumption that the K3 surface Y is non-compact, so that gravity
is effectively decoupled and our discussion of multi-fermion F -terms in the context of global super-
symmetry is valid. In this case, the low-energy effective action for the moduli associated to Y is a
hyperkahler sigma model whose target space is the hypermultiplet moduli space MH . Here we use
the non-compactness of Y , since in the context of N = 2 supergravity, MH is only quaternionic
Kahler.

Although a general quaternionic Kahler manifold need not be Kahler, a hyperkahler manifold
certainly is Kahler. Our implicit choice of a distinguished N = 1 subalgebra in (14) — the
subalgebra associated to the superspace coordinate θ — then corresponds geometrically to the
choice of a distinguished complex structure on MH , in which we regard MH as an ordinary Kahler
manifold appropriate for a sigma model with only N = 1 supersymmetry.

Because the fermionic measure d2χ in (14) can be interpreted as part of the chiral measure on
N = 2 superspace, the corresponding fermionic integral can be equivalently evaluated by acting on

the integrand ΨC with the operator {Q
(2)
α̇ , [Q(2) α̇, · ]}, where Q

(2)
α̇ is the anti-chiral supercharge

generating translations along χ in superspace.

To describe geometrically the action of Q
(2)
α̇ in the hyperkahler sigma model, we again intro-
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duce N = 1 chiral and anti-chiral superfields Φi and Φi to describe local holomorphic and anti-
holomorphic coordinates on MH in the distinguished complex structure. This complex structure
corresponds to a covariantly constant endomorphism I of TMH satisfying I2 = −1, and the action

of the associated supercharge Q
(1)
α̇ is identified with the action of the Dolbeault ∂ operator on MH .

Because MH is hyperkahler, we also have covariantly constant tensors J and K which define
additional complex structures on MH and which satisfy the quaternion algebra with I. Of course,
the tensor J is used to define the extra supercharges of the N = 2 supersymmetry algebra, and the

action of Q
(2)
α̇ can be identified geometrically with the action of the differential operator J(∂), or

in components Ji
i
∂i, on MH .

With this geometric description of Q
(2)
α̇ , we immediately deduce that

∫

d2χ ΨC =
{

Q
(2)
α̇ ,

[

Q(2) α̇, ΨC

]}

= Ji
i
J

j

j
(∇i∇jΨC) Dα̇Φi D

α̇
Φj . (16)

Here ∇ denotes the covariant derivative associated to the background hyperkahler metric on MH .
In writing (16), we note that ΨC transforms globally as a function on MH , and we use the fact
that J is covariantly constant and so annihilated by ∇.

In the notation of a four-dimensional effective action with only N = 1 supersymmetry, the instanton
correction δS in (14) is then given by

δS =

∫

d4x d2θ Ji
i
J

j

j
(∇i∇jΨC) Dα̇Φi D

α̇
Φj . (17)

Hence the trivial family of instantons parametrized by E generates the multi-fermion F -term of
degree p = 1 that is represented geometrically by the tensor

ωi j = Ji
i
J

j

j
(∇i∇jΨC) . (18)

We see that, even in the simple example X = E × Y , a one-parameter holomorphic family of
rational curves generates the multi-fermion F -term describing a deformation of the moduli space.
This simple example preserving N = 2 supersymmetry can then be extended fiberwise to a similar
instanton computation in Calabi-Yau backgrounds preserving only N = 1 supersymmetry.
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