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Topological Strings

I am going to tell you about some work I have been doing with Kirill Saraikin and Cumrun Vafa,
the first part of which has appeared in [1] and the second part will appear soon [2].

Since this is the first talk in this workshop about topological strings, I would like to start by
introducing topological strings and describing some of their properties.

For our purposes we will be interested in studying topological strings on a Calabi-Yau 3-fold X.
As in the standard string theory, the topological string deals with maps from a genus g Riemann
surface ¥, into X. This map must satisfy certain conditions, as being holomorphic, etc. The result
is an object called the topological partition function

Ztop = €XP [Z )\292.7-"9] , (1)

)

which is an expansion in genus. The topological nature of this theory refers to the fact that it is
much simpler than the physical string theory. There are two main reasons to be interested in the
topological string:

e Firstly, it computes quantities in the physical string theory which are protected by supersym-
metry. In particular, effective actions of 4D string and field theories, e.g. those of Seiberg-
Witten type.

e Secondly, it computes interesting topological invariants of the 3-fold X.
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The quantities computed depend on some data that characterizes the manifold X. The geometry
of a Calabi-Yau depends on the Kéhler and the complex structure, and, correspondingly, there are
two types of topological strings,

e The A-model: it depends only on the Kihler moduli ¢; (I =1,...,h"1) of the Calabi-Yau,
and the terms in (1) are

fg(Xv tI) = Z GWg(ﬁ)tﬁv (2)
,GGHQ(X,Z)

where GW,(3) are the so-called Gromov-Witten invariants. These count the number of stable
maps in class 3, and direct computation of these invariants is quite involved.

e The B-model: This model depends on the complex structure moduli of the Calabi-Yau.
Here computations are relatively simple, e.g. in genus zero the results are expressed in terms
of the periods of the Calabi-Yau. Choosing a symplectic basis of A’ and Bj cycles in X
(I,J=1,...h%!' +1), we can introduce

XI:/AIQ FJ:[BJQ. (3)

where € is the unique holomorphic covariantly constant three-form on the Calabi-Yau. These
variables are not independent; they are related by

So, we see how the first term in the genus expansion (1) appears from relatively simple geo-
metrical properties of X. The X! variables actually provide a projective parametrization of
the complex structure, so there are only h*! independent complex coordinates. For higher
genus terms in (1) the details are different but the idea is conceptually similar. For example,
J1 is the holomorphic version of the Ray-Singer torsion. Using a recursive procedure exploit-
ing the so-called holomorphic anomaly, one can obtain all the higher F, coefficients starting
from Fy, as explained in [3].

Mirror symmetry, in its simplest form, says that a Calabi-Yau X has a mirror Calabi-Yau X, whose
Hodge numbers are related as (hb! = h%1 A% = p11) and such that
A -
Ztop(Xa t) = ZtB;p(X7XI) . (5)

Once we have properly identified the mirror pairs X and X, it is very easy to compute the right
hand side of (5), and thus obtain the Gromov-Witten invariants on the left-hand side.
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Now, consider the series (1) for the B model (if mirror symmetry holds, then the same is valid for
the A model). Remember that the X! coordinates are projective coordinates. One can show that
a term

N F(XT) (6)

is homogeneous of degree 2 — 2¢g under rescalings of X!. More precisely, it is a section of a line
bundle whose first Chern class is 2 — 2g. Put differently, it is a section of a bundle £2(2~29) where
L is a line bundle on the complex structure moduli space, where the holomorphic 3-form 2 takes
values in. From (6) we see that the overall rescaling of the projective coordinates X I is equivalent
to the rescaling of the coupling constant X. So, one can keep all the h*! + 1 variables X!, which
altogether parametrize the complex structure moduli as well as the coupling constant of the theory.

From topological partition function to the wave function of the universe

The next crucial point about the topological partition function is that it is not really a function,
but a wave function! This was realized first in [3], and further clarified by Witten in [4]. It has both
holomorphic and anti-holomorphic dependence on the complex structure moduli, which is captured
by the so-called holomorphic anomaly equation of [3]. In the B model, it has the following origin.
Quantization of the topological string can be viewed as a quantization of the space H3(X,R) with
the natural symplectic structure. This requires a choice of polarization, that is a separation of the
variables into “canonical coordinates” and “canonical momenta”. Each polarization gives a different
topological partition function Z;,,. In fact, under a change of polarization, Z,, transforms as a
wave function,

wtop = Ztop- (7)

For example, if we interchange a pair of coordinate and momentum variables in the polarization,
the corresponding Z;,,’s are related to each other by a Fourier transform, as expected for a wave
function, and as verified explicitly in some examples. This is a nontrivial and restrictive property,
which one might hope to use in order to solve the topological string on a compact Calabi-Yau.

Question: Does this ”background dependence” have a physical meaning?
Answer: Yes. For example, when compatifying to 4D in a Calabi-Yau, the effective action will
depend on the choice of vacuum around which we expand.

Comment (by C.Vafa): A "mini” version of the holomorphic anomaly can be seen in an N=2
theory written in terms of a prepotential. If you change from magnetic to electric variables, the
prepotential changes by a Legendre transformation, which is a classical version of the Fourier
transform.

- Yes, precisely as there are several dual forms of writing a prepotential, there are many ways of
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writing Ziop . In terms of the periods (3), one has 2(h*!+1) coordinates ReX’, ImX!, ReF;, ImF;
and one selects coordinate-momentum pairs among them.

The interpretation of the topological partition function as a wave function is a very deep notion and
certainly not fully understood yet. An important progress in this direction was made by Ooguri,
Vafa and Verlinde (OVV) in [6]. They argued that

the topological partition function Zi,, on a giwven Calabi-Yau CYs3 is the minisuper-
space Hartle-Hawking wavefunction for flux compactifications of Type II strings on
M? =81 x §% x CYs.

The statement holds both for A and B theories (related by mirror symmetry). What is the minisu-
perspace Hartle-Hawking (HH) wave function? There has been a lot of progress in understanding
string theory in static spacetimes, but we are very bad at explaining how our universe evolved from
certain initial conditions to its present state. Hartle and Hawking proposed in [5] that our universe
evolved from an initial universe of zero size, in the far past Euclidean time. This ”Nothing” universe
is connected to our present universe by a gravitational instanton, which has our present universe
M as a spacelike boundary. The wavefunction of the universe is a functional of the 3D metric in
our present time,

\IIHH(gM) = Z /[DQW] eiSEuclidean[gW} , (8)
W:0W=M

where the path integration is done over all previous topologies W and histories gy. Invariance
of this path integral under reparametrizations of the time direction transverse to M imposes on
U(gar) a differential equation called the Wheeler-DeWitt equation.

This nice proposal has the drawbacks of its generality, since in practice we cannot perform any of
these sums or path integrals. The way to make sense of the Hartle-Hawking proposal, as noticed in
[5], is to reduce the path integral to a very limited set of modes, say, one or two parameters. This
is called the minisuperspace aproximation. For example, in [5] the three dimensional spatial slice
M was taken to be an S3, and the free parameter that changed in Euclidean time was its radius
(which gets interpreted as the cosmological constant). In the OVV proposal, the reduced set of
modes are those captured by the topological string, namely Kéhler moduli or complex moduli of
the Calabi-Yau (plus the fluxes turned on in the background).

The OVV proposal is very interesting since it gives us a fully string theoretical approach to cosmol-
ogy through a very specific realization of the Hartle-Hawking wave function. Moreover, since Z;,
is a sum over all the genera (see (1)), we get all the string theory corrections to the minisuperspace
wave function.

Comment (by S.Vandoren): It would be interesting to see if from the stringy-corrected Hartle-
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Hawking wave function one can read corrections to the Wheeler-DeWitt equations, which many
people have been looking for.

Once we have the wave function U of our Universe, we can start computing correlation functions,
as in quantum mechanics, of the type

I will describe to you two applications of this idea.

A toy model of string cosmology

This follows closely the original idea of Hartle-Hawking. The questions we want to ask are about
the density perturbations of the early universe, which can now be measured by various experi-
ments, notably the W-Map, which is releasing wonderful data. These measurements probe how
the metric in the early universe was distorted. So we want to compute correlators of the metric
perturbations dg,, . Since this is a tensor, it is usual to define

p(x) = og,,(x). (10)

The two-point correlators of p can be measured. They turn out to be extremely small, and behave
as

(ppo_p) ~ kI~ (11)

in a momentum basis. The standard explanation of this perturbations is the theory of inflation.
One can also think of an alternative cosmological model where these scalar fluctuations are encoded
in the Hartle-Hawking wave function. Computations have been done using the ordinary Hartle-
Hawking wave function, without much success (see [7]). But now that we have the full stringy
Hartle-Hawking wave function, it is natural to ask if string theory can yield the right behavior.

Since this is a toy model, we will assume our universe is originally maximally symmetric: a three-
sphere S2. The only way to confine a three sphere in our M? = S' x 2 x CYj3 is to have S® C CY5.
Contrary to the usual case where we compactify and make the Calabi-Yau small, in this case the S3
inside the Calabi-Yau is big since it is our universe. The variations of the moduli of this Calabi-Yau
lead to variations of the metric of this S3. Taking for concreteness the B model, the moduli is given
by variations of the complex structure, or equivalently, the holomorphic three form. Writing the
latter as

Q= Qpe?, (12)

with Qo a reference 3-form, the field ¢ gets associated with the volume of S3, and it is natural
to compute correlators of d¢. A specific realization of the embedding S® C CYs3 is given by the
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deformed conifold, which is a Calabi-Yau given by 7%S3. It can be expressed as an hypersurface
in C4,

a4t =p, weC, (13)

where |p| is roughly the radius of S3. Now, the good news is that this model can be solved exactly,
because the topological B model of the deformed conifold is equivalent to the ¢ = 1 string theory
at the self-dual radius [8].

Perturbations to the sphere can be obtained by adding to the right hand side of (13) a general
term €(x;). We will focus on €(z;) = €(x, y) deformations of the form

xy —zw=p+e(r,y) =p+ Z (tpx™ —t_ny"™) , (14)
n>1

where x,y, z, w are simple linear combinations of the x;’s. These perturbations correspond roughly
to different spherical armonics in S3, and in the ¢ = 1 theory they correspond to tachyon momentum
modes, whose correlators we know how to compute from matrix models. The number of possible
deformations here is infinite, since this is a non-compact Calabi-Yau. Finally, one can check that
the relation with the size of the S% ¢ in (12) is

¢ = 8pﬁ(x, y) ) (15)
where x = p/2¢, y = p'/2¢=%_ The end result for the two-point function of the scalar p in (10) is
{prp_ip) ~ g2lk, (16)

which (unfortunately!) differs from the observed cosmological behavior (see (11)).

Note that we are not considering in (14) deformations depending on z,w. This would correspond to
tachyon winding modes, whose correlators we do not know yet how to compute with full generality.

A toy model of string phenomenology

Unlike the application we have just considered, in the more conventional scenario of Calabi-Yau
compactifications our world lies in the uncompactified dimensions. Ignoring the fact that in the
OVV proposal we are instructed to compactify three additional dimensions to S' x S?, we can
think of |1s0p|% as a probability density in the space of string vacua, parametrized by the moduli
of the Calabi-Yau.

The critical points of this probability density are peaked in the so-called attractor points of the
Calabi-Yau. These are points in the moduli space of the Calabi-Yau satisfying

Ima? — 7;;Ima; =0, (17)
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where

i - OF (a) 7_”82F(a)
P 8(11' K 8(11'3(1]' ’

(18)
and F' is the prepotential coming from the topological string partition function.

The attractor equations (17) can be obtained from a variational principle, keeping one of the periods
of the holomorphic 3-form fixed,

1
X'= | Q= fized ~ —. (19)
A0 s
This constraint makes sense, since otherwise €2 is defined only projectively. Note that the attractor
equations are highly nonlinear, but they are not differential equations. Moreover, it can be shown
that their solutions are generically isolated points.

If one wants the attractor points to be not just critical but maxima or minima, one gets the
additional constraint I'ma; = I maf = 0, namely, all the periods are real, or more generically, can
be chosen to have the same phase. Physically this means that BPS bound states of branes become
marginal. In fact, it is the maximal allowed set of marginal bound states.

Finally, an interesting result we obtained is that the second derivative of the probability |77[)t0p|2
with respect to the moduli is correlated with the beta function of the low energy effective theory.
Namely, at the maximum points vector multiplets become massless and one has a theory with
negative beta functions, i.e. an asymptotically free theory.
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