Unification of Knot Homologies

Sergei Gukov
2005 Simons Workshop in Mathematics and Physics
based on joint work [hep-th/0412243] with A.Schwarz and C.Vafa [math.GT/0505662] with N.Dunfield and J.Rasmussen

General Picture of Knot Polynomials and Knot Homologies

Polynomial Knot Invariants

$$
\boldsymbol{\mathcal { R }}_{12} \boldsymbol{\mathcal { R }}_{13} \boldsymbol{\mathcal { R }}_{23}=\boldsymbol{\mathcal { R }}_{23} \boldsymbol{\mathcal { R }}_{13} \boldsymbol{\mathcal { R }}_{12}
$$

quantum $s l(N)$ invariant: $\quad P_{N}(q)=\operatorname{Tr}(\boldsymbol{\mathcal { R }} \otimes \ldots \otimes \boldsymbol{\mathcal { R }})$

$$
q^{N} P_{N}(\nless)-q^{-N} P_{N}\left(X^{\nearrow}\right)=\left(q^{-1}-q\right) P_{N}()()
$$

Polynomial Knot Invariant	Quantum Group	Homology
$\Delta(\mathrm{q})$	$\mathrm{U}_{\mathrm{q}}(\mathrm{gl}(1 \mid 1))$	`knot Floer homology" \\ [Ozsvath-Szabo'02] \\ [Rasmussen'03] \end{tabular} \\ \hline Jones & \(\mathrm{U}_{\mathrm{q}}(\mathrm{sl}(2))\) & \begin{tabular}{l} `Khovanov homology" [Khovanov'99]
$\mathrm{P}_{N}(\mathrm{q})$	$\mathrm{U}_{\mathrm{q}}(\mathrm{sl}(3))$ $\mathrm{U}_{\mathrm{q}}(\mathrm{sl}(\mathrm{N}))$	[Khovanov'03] [Khovanov-Rozansky'04]
$K h_{s y m p}^{*}=\oplus_{i-j=*} K h^{i, j}$	`symplectic Khovanov homology"’ [Seidel-Smith'04]	
$\operatorname{dim} K h^{\prime}=2^{l}$	$\mathrm{U}_{\mathrm{q}}(\mathrm{sll}(1))$	deformations [Lee'02;Gornik'04]

Example: explicit calculation for the trefoil knot [math.QA/020043]

$$
q^{2} J(X)-q^{-2} J(X)=\left(q^{-1}-q\right) J()()
$$

Example: $J(\mathscr{P})=q+q^{3}+q^{5}-q^{9}$

Unification of Knot Homologies

Poincare polynomial = Superpolynomial

$$
\mathscr{P}(K)(a, q, t)=\sum a^{i} q^{j} t^{k} \operatorname{dim} \mathscr{H}_{i, j, k}(K)
$$

Conjecture: There exists a finite polynomial $\overline{\mathscr{P}}(K) \in \mathbb{Z}\left[a^{ \pm 1}, q^{ \pm 1}, t^{ \pm 1}\right]$ such that:

$$
{\overline{K h R_{N}}}_{N}(q, t)=\frac{1}{q-q^{-1}} \overline{\mathscr{P}}\left(a=q^{N}, q, t\right)
$$

for sufficiently large N.
Reduced Superpolynomial: $\mathscr{P}(K) \in \mathbb{Z}_{\geq 0}\left[a^{ \pm 1}, q^{ \pm 1}, t^{ \pm 1}\right]$ such that:

$$
K h R_{N}(q, t)=\mathscr{P}\left(a=q^{N}, q, t\right) \text { for sufficiently large } N .
$$

Families of differentials: $d_{N}: \mathscr{H}_{i, j, k}(K) \rightarrow \mathscr{H}_{i-2, j+2 N, k-1}(K)$

$$
\left(\mathcal{H}, d_{N}\right)= \begin{cases}s l(N) \text { knot homology } & , \quad N>1 \\ \text { Lee's theory } & , \quad N=1 \\ \text { knot Floer homology } & , \quad N=0\end{cases}
$$

Example: trefoil knot

a^{a}

