
String gases and chaos

Dan Kabat

July 28th, 2005

Talk at the Third Simons Workshop in Mathematics and Physics

SUNY at Stony Brook, July 25 - August 26, 2005

Notes by Ari Pakman

The Brandenberger-Vafa scenario

This is an old but very intriguing picture of the early universe cosmology in string theory [1]. We
imagine that the early universe was spatially compact, say a T 9 torus, with a size of order of the
string scale ls, and very hot, with many degrees of freedom excited. In particular there was a
network of string winding around the universe and a gas of KK modes.

Question: What is the physical evidence for this picture?
Answer: There is certainly no physical evidence, aside from the fact that if you evolve the present
universe back in time the temperature increases, so it is natural the assume that there was a very
hot early phase. The main argument is that this seems a generic state of string theory, with all
possible degrees of freedom excited.

Now, this should be a quasi-stable state, for the following reason. The tension of the winding
modes keeps the universe from expanding, but the gas of KK excitations has momentum along the
various directions, and thus pushes towards expansion. If the size of the torus is of order ls, the
two forces are balanced, and this balance can remain for an arbitrary time. But eventually thermal
fluctuations will drive the system out of equilibrium and some dimensions can become larger than
the string scale ls. The mechanism for this is the annihilation of two strings with opposite windings.
There is always a reservoir of such strings since in a spatially compact universe the total winding
number should be zero. This annihilation of winding modes diminishes their negative pressure and
allows the universe to expand.

Question: What if the thermal fluctuations cause a given dimension to shrink by creation of
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winding/anti-winding pairs?
Answer: It could be either way, since by T-duality a shrinking is an expansion.

We would like to know how many dimensions could decompactify in this way. The crucial obser-
vation is that two string worldsheets will generically intersect in 2+2 = 3 +1 dimensions, and in
higher dimensions they will miss each other. This is actually a property of classical string world-
sheets, but the classical picture is reliable at energies below the string scale. So this mechanism
would explain the number of big dimensions in our present universe.

Comment (by C.Vafa): Mathematically this picture is related to the fact that in the classification
of manifolds, the nature of the classification changes drastically below and above four dimensions.
This would be a stringy worldsheet application of these ideas.

Some problems in the BV scenario

In [2] we decided to look at this scenario a littler closer, and we set out to compute the probability
that different numbers of spacial dimensions get decompactified. We introduce a metric for a
rectangular torus as

ds2 = −dt2 + α′
9∑

i=1

e2λi(t)dx2
i (1)

and it is convenient to define a modified dilaton φ̃ as

φ̃ = 2φ−
9∑

i=1

λi , (2)

which has nice properties because it is invariant under T-duality and furthermore, if we reduce the
system to 1+0 dimensions, the effective coupling is

geff = eφ̃ . (3)

Question: Why is this the effective coupling? Is not always eφ the coupling for string interactions?
Answer: The probability that two winding strings annihilate is

prob. ∼ e2φ

V ol(T 9)
e2λ1 ∼ eφ̃e2λ1 (4)

Now, a problem comes in from the Hamiltonian constraint of general relativity, namely, the time-
time component of Einstein equations, G00 = 8πGNT00. In the context of cosmology this equation
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is usually written as

H2 =
8πGN

3
ρ (5)

where H is the Hubble parameter and ρ is the energy density of the matter. In our setting this
equation becomes

˙̃
φ

2
=

9∑
i=1

λ̇i
2
+ eφ̃ρV , (6)

where V is the volume of the compactified space. The right hand side is strictly positive, so φ̃
evolves monotonically in time. There are two possibilities, and both are problematic for the BV
scenario:

• ˙̃
φ < 0 : In this case the effective coupling (3) becomes weaker in time, and the strings end
up not interacting at all. So the winding/anti-winding annihilation does not take place! And
one can verify that the time-scales are such that this is the final outcome regardless of the
initial conditions.

• ˙̃
φ > 0: In this case the effective coupling (3) becomes strong, the 10D string regime is no
longer reliable and we must consider the full M-theory. For this case we did a different
analysis in [3]. We considered a gas of M2 branes in a torus. In this setting, the Hamiltonian
constraint implies that the volume of the torus increases monotonically, so the gas of M2
branes becomes non-interacting since it gets diluted by the cosmic expansion (except for very
fine-tuned initial conditions). So the analysis is different but the outcome is basically the
same.

Chaos and the dynamics of moduli fields in the early universe

Despite the above problems with the BV scenario, it is such a nice idea that you cannot stop
thinking about it. It seems we have left something out of our analysis. To illustrate the idea, let
us review an interesting work by Horne and Moore [4]. They studied the effective action for the
vacuum dynamics of the IIB string in 10D. We have the RR scalar aR and the dilaton φ combined
into

τ = aR + ie−φ (7)

and clearly τ lives in the upper half-plane. In a spatially homogeneous setting, we have τ = τ(t),
and the equations of motion reduce to a geodesic equation for τ with the Poincaré metric

ds2 =
dτdτ̄

(Imτ)2
(8)
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The geodesics are semi-circles centered on the real axis. But this is leaving out S duality! What
we should really do is to fold out the semicircular geodesic into the fundamental domain of the
SL(2, Z) group acting on τ as

τ → aτ + b

cτ + d
ad− bc = 1 (9)

As noted in [4], this results in a curve that ergodically fills the whole fundamental domain, by
hitting the walls and bouncing back. There is only a set of measure zero in the space of trajectories
which do not fill the fundamental domain, and this set includes precisely the trajectory we studied
above, when we assumed aR = 0.

It seems that the ergodicity follows from two key properties: the metric (8) has negative curvature
and the fundamental domain has finite volume. The negative curvature makes two close geodesics
diverge, but due to the final volume they have nowhere to go, so they end up filling to whole space.
This is interesting in relation to Cumrun’s observation of two days ago, that all the moduli spaces
coming from string theory have finite volume. It seems that they also come with non-positive
curvature, a property which has no justification from a purely field-theoretic point of view.

Two points should be stressed before drawing any conclusion from the above result. Firstly, the
geodesic motion corresponds to the dilaton in the Einstein frame, but our original interest was on
the string frame. Secondly, this analysis only considered the vacuum, and we would like to include
matter.

An example: Einstein gravity compactified in Tn

The above idea of restricting the dynamics of the moduli fields to the fundamental domain of a
discrete group action on the moduli space, leads to consider a simple example: lets us compactify
(n+1)-dimensional pure gravity on an n-torus.1 To embed this in string theory, we can think that
we are considering a subsector of M -theory on an n = 10 torus.

Let us then consider a spatially homogeneous metric written as

ds2 = −dt2 + V (t)2/ngij(t)dxidxj , (10)

with |gij | = 1. We have factored out the total volume V (t). The moduli space M for this family
of metrics turns out to be

M = R+ ×Mn , (11)

with

Mn = SL(n, Z)\SL(n, R)/SO(n, R) . (12)
1The results in this section were obtained in collaboration with Nada Petrovic.
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The first factor in (11) corresponds the values of V, and Mn is the moduli space of gij : the
symmetric n × n unimodular matrices are parametrized by the coset SL(n, R)/SO(n, R), and we
must further mod out by the group SL(n, Z) of large diffeomorphism of Tn. The volume of Mn has
been calculated by Minkowski in an amazing computation (he was interested in this for number-
theoretical reasons). The volume is [5]

V ol(Mn) =
n2n−1ζ(2) . . . ζ(n)

V ol(S1) · · ·V ol(Sn−1)
(13)

Also, the space Mn has semi-definite negative curvature, so this is another instance of the phe-
nomenon we mentioned above.

The Einstein action for the metric (10), boils down to a sigma model action for the space Mn, plus
a term for the volume,∫

dn+1x
√
−GR ∼

∫
dt

[
Tr(g−1ġg−1ġ)− V̇ 2

V 2

]
. (14)

The trajectories of gij ergodically fill the moduli space also in this case. By bouncing around the
space Mn, one can ask what is the probability of arriving to a region in Mn of the type

Tn → Tn1 × Tn2 (15)

where Tn1,2 have radii R1,2, and R1 � R2. Due to the ergodicity of the motion, this probability
is proportional to the volume in moduli space of such configurations. This has been probably
computed by mathematicians, but there is a nice physical way of obtaining the result. We dimen-
sionally reduce the theory to the big torus. So we get a metric on the big torus, a metric on the
small torus and a collection of KK gauge fields. The latter correspond geometrically to the ways
the small torus is tilted with respect to the big torus. Then the probability of a decomposition like
(15) is

prob. ∼ V ol(Mn1)× V ol(Mn2)× V ol(flat KK fields)
V ol(Mn)

(16)

∼
(

R2

R1

)n1n2

(17)

where we have used Minkowski’s result (13) and the fact that the volume of flat connections on a
torus is the volume of the dual torus. So the probability is small when the radii of the two tori
are different. It is minimized when n1 = n2. In other words, configurations with bigger difference
between n1 and n2 are more probable. This scenario is potentially relevant for cosmology. The
hope is that when we add string interactions, the probability gets peaked around n1 = 3, explaining
thus our universe. Moreover, one expects that once this most probable configuration is realized,
new dynamic effects appear that stick the universe to n1 = 3, and ergodicity is dynamically lost.
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Comment (by A.Klemm): In CY compactifications the curvature of the moduli space comes
automatically negative. This follows from

eK =
∫

Ω ∧ Ω̄ (18)

gij = ∂i∂̄j̄K (19)
Rij̄ = ∂i∂̄j̄ log detg (20)

and from this one shows that detRij̄ is negative. See works by Tian (1986) and Todorov.

References

[1] R. H. Brandenberger and C. Vafa, “Superstrings In The Early Universe,” Nucl. Phys. B 316,
391 (1989).

[2] R. Easther, B. R. Greene, M. G. Jackson and D. Kabat, “String windings in the early universe,”
JCAP 0502, 009 (2005) [arXiv:hep-th/0409121].

[3] R. Easther, B. R. Greene, M. G. Jackson and D. Kabat, “Brane gases in the early universe:
Thermodynamics and cosmology,” JCAP 0401, 006 (2004) [arXiv:hep-th/0307233].

[4] J. H. Horne and G. W. Moore, “Chaotic coupling constants,” Nucl. Phys. B 432, 109 (1994)
[arXiv:hep-th/9403058].

[5] This follows from theorem 10.2 in W. Scharlau and H. Opolka, “From Fermat to Minkowski:
Lectures on the theory of numbers and its historical development” (Springer-Verlag, 1985).

- 6 -


