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I will talk about hydrodynamics of non-extremal NS5 branes and computation of transport

coefficients in the holographically dual string theory. This talk is mostly based on [1]. As

part of the introduction and motivation I’ll discuss other issues related to hydrodynamics.

Hydrodynamics

Hydrodynamics is an effective theory describing time evolution of the densities of conserved

charges in the regime of long wavelengths, i.e. at a scale l such that

lmicro � l� L , (1)

where lmicro is a characteristic scale of microscopic processes in the system (e.g. a corre-

lation length), and L is a typical size of the system. Hydrodynamic description becomes

unreliable when the inequality (1) is not satisfied. Schwarzschild black holes do not cor-

respond to any hydrodynamic regime in a (hypothetical) holographicaly dual description

because in that case L ∼ 1/T ∼ lmicro. We also do not expect the linearized hydrody-

namic description to hold near a point of a phase transition, where the correlation length

is typically large. We shall see that in the case of LST, predictions of the linearized hydro-

dynamics are not in contradiction with the hydrodynamic limit of the correlation functions

obtained in the microscopic theory at the tree level.

To derive the dispersion relations for the shear and the sound modes, consider small

deviations from equilibrium < Tµν > +T̃µν(t, x) in the stress-energy tensor of a theory in

a D + 1 dimensional Minkowski space. The equations of linearized hydrodynamics follow

from the conservation law ∂µT
µν = 0,

∂0T̃
00 + ∂iT

0i = 0 ,

∂0T
0i + ∂j T̃

ij = 0 ,
(2)
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supplemented by the constitutive relations which express all components T̃µν in terms of

fluctuations T̃ 00, T̃ 0i of the densities of conserved charges (energy and momentum):

T 00 = ε+ T̃ 00 , (3)

T ij = δij

(
P +

∂P

∂ε
T̃ 00

)
− 1
ε+ P

[
η

(
∂iT

0j + ∂jT
0i − 2

D
δij∂kT

0k

)
+ ζδij∂kT

0k

]
, (4)

where ε =< T 00 >, ε and P are the equilibrium energy density and pressure, η and ζ are

the shear and bulk viscosities, respectively. Assuming the coordinate dependence of the

form ∝ e−iωt+iqz, we find that the system (2) has two types of eigenmodes - the shear

mode with the dispersion relation

ω = − iη

ε+ P
q2 = − iη

sT
q2 , (5)

and the sound mode whose dispersion relation is determined by the equation

ω2 + iΓω q2 − vsq
2 = 0 , (6)

where vs = ∂P/∂ε is the speed of sound and

Γ =
1

ε+ P

[
ζ +

(
2− 2

D

)
η

]
(7)

is the damping constant. For nonvanishing speed of sound the dispersion relation is

ω = ±vsq −
iΓ
2
q2 + · · · , (8)

where ellipses denote terms suppressed for qΓ/vs � 1. However, if vs = 0, we find only

one nontrivial solution,

ω = −iΓ q2 . (9)

The dispersion relations for the shear and the sound wave modes appear as the poles

of the retarded Green’s functions of the stress-energy tensor

Gµν,ρσ(ω, q) = −i
∫
dtdDxe−iωt+iqz θ(t)〈[Tµν(t,x), Tρσ(0)]〉 . (10)

where x = (xa, z), a = 1, . . . , 4 and the spatial momentum is chosen along the z direction.

In the hydrodynamic limit ω/T � 1, q/T � 1 we expect the following:
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• Each of the shear mode correlators Gzxa,zxa , Gtxa,txa , Gtxa,zxa , where xa 6= z, has

a pole at ω given by (5) .

• The scalar mode correlators Gxaxb,xaxb , where xa 6= z, a 6= b, do not exhibit hydro-

dynamic poles.

• The correlators of the sound mode, Gtt,tt, Gzz,zz, Gtz,tz, all have poles at ω given

by (8) , or, if vs = 0, by (9) . The correlator Gxaxa,xaxa , where xa 6= z, belongs to the

same family, unless

vs = 0 , ζ =
2
D
η , (11)

in which case the corresponding mode decouples from the sound wave mode, as follows

from (4) .

Hydrodynamics and Gravity

The viscosity of ideal gas is proportional to the mean free path. Thus, it is not surprising

that η/s in Yang-Mills theory diverges as t’Hooft coupling of the theory goes to zero. At

strong coupling, η/s can be computed via AdS/CFT [2]. The result is consistent with (5),

with η/s = 1/4π. This turns out to be a universal value, also valid for other non-extremal

branes. This prompted [3] to conjecture that the value of η/s is bounded from below

by 1/4π. They checked that this inequality is satisfied for a number of substances. The

conjecture received supporting evidence in [4] where α′ corrections to η/s were computed

and found to be positive. It would be interesting to understand how string theory modifies

the picture. With this motivation, we study a system of k NS5 branes at finite temperature,

which is described holographically by an exact conformal field theory.

Little String Theory

We start by reviewing the thermodynamics of LST closely following the presentation in

[5]. We take the supergravity solution for the k coincident non-extremal NS5-branes in the

string frame and take the limi gs→0 keeping fixed the energy above extremality, per unit

volume

ε ≡ E

V5
=

1
(2π)5α′3

µ, µ ≡ r20
g2

sα
′ . (12)

The Wick-rotated near-horizon Euclidean geometry is

ds2 = kα′
(
dφ2 + tanh2 φdτ2 + dΩ2

3

)
+ dx2

5 , (13)

e2Φ =
k

µ cosh2 φ
. (14)

3



The absence of the conical singularity at φ = 0 requires τ to be 2π-periodic. The inverse

temperature is equal to the circumference of the temporal circle in (13),

βH = 2π
√
kα′ . (15)

As reviewed in [5], strings propagating in the background (13), (14) are described by an

exact conformal field theory. We review some details of that theory in Section 4.

In the gravity approximation the inverse temperature is constant (independent of the

energy density)

β =
∂S

∂E
= βH . (16)

Therefore, the entropy is proportional to the energy,

S = βHE , (17)

and LST has Hagedorn density of states

ρ(E) ∼ EαeβHE

[
1 +O

(
1
E

)]
. (18)

The coefficient α in (18) has been computed in [5] and was found to be negative. This has

important implications for the phase structure of LST. The relation

β = ∂S(E)/∂E (19)

together with (18) leads to the following energy-temperature relation

β − βH =
α

E
+O

(
1
E2

)
. (20)

Thus for temperatures slightly above the Hagedorn temperature the energy is given by

E =
α

β − βH

[
1 +O(β − βH)

]
. (21)

In this regime, one can perform consistent perturbative expansion in powers of β − βH or,

equivalently, in powers of 1/E. This is the type of expansion we will be interested in. As

we review below, this corresponds to the genus expansion in the dual string theory.

Eq. (18) implies that the free energy F of LST is determined by

−βF = S − βE ' −(α+ 1) log(β − βH) ' (α+ 1) logE . (22)
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In the second equality we used Eq. (21). The leading term in the free energy, which is

proportional to energy, vanishes due to Eq. (17). The string theory partition function is

related to the free energy of LST via

Zstring = −βF . (23)

Genus zero string partition function is proportional to energy,

e−2Φ0Z0 =
µ

k
Z0 ∼

ε

k
Z0 , (24)

but, as explained in [5], Z0 vanishes. Hence, to compute the first non-trivial term in the

free energy one must compute the string partition function on the torus. This partition

function is proportional to logE. The computation was done in [5], where the coefficient

α was found to be

α = −1− a1V5 , (25)

where a1 is a positive number which scales as (kα′)−5/2 [5]. From (22) it follows that the

pressure P = −∂F/∂V5 ∼ a1 logE, and thus the speed of sound,

vs =

√
∂P

∂E
∼ 1√

E
, (26)

vanishes at T = TH .

Computing two-point function of Tµν

We consider a system of k non-extremal NS5 branes. The Euclidean version of the near

horizon geometry defines an exact superconformal field theory R5 × SL(2)
U(1) × SU(2). We

denote by Xµ coordinates on R5 and by ψµ their superpartners. Far from the tip of the

cigar, the background has an asymptotic form of a cylinder with linear dilaton. Both φ

and τ have their fermion superpartners ψφ and ψτ . The central charge of the cigar theory

is cSL(2)/U(1) = 3+6/k, so that the total central charge is 15/2+3+6/k+9/2−6/k = 15.

Below we focus on the quantities which are holomophic on the worldsheet (there are

similar expressions for their antiholomorphic counterparts). The asymptotic expressions

for the generators of the N = 2 worldsheet superconformal algebra are

G+ = iψ∂X∗ + iQ∂ψ, G− = iψ∗∂X + iQ∂ψ∗, J = ψψ∗ + iQ∂τ , (27)
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where ψ = (ψφ + iψτ )/
√

2 and Q =
√

2/k. The important set of observables in the

SL(2)/U(1) model consists of Virasoro primaries Vjm with the conformal dimension and

the U(1)R charge given respectively by

∆[Vjm] = −j(j + 1)
k

+
m2

k
, q =

2m
k
. (28)

The asymptotic behavior of Vjm is

Vjm
∼=
eimQτejQφ

2j + 1
. (29)

This allows us to compute the action of superconformal generators on Vjm:

G+
− 1

2
Vjm

∼= −iQ(j +m)ψVjm, G−
− 1

2
Vjm

∼= −iQ(j −m)ψ∗Vjm . (30)

Now we briefly describe the computation of the two-point function of the stress-energy

tensor (10). For more details, see [1]. String theory computation is performed in Eucledian

space, making ω quantized in the units of temperature. To recover the Lorenzian version

of the correlator, we must perform analytic continuation to imaginary frequencies.

Consider polarization that is longitudinal on the boundary. The vertex operator has

the following asymptotic form

V l = cc̄e−ϕ−ϕ̄ξza
[
(ψz +Aψφ)ψ̄a + ψa(ψ̄z +Aψ̄φ)

]
eiqzVjmm̄ . (31)

For a moment we will concentrate on the holomorphic part of the vertex operator,

(ψz +Aψφ)eiqzVjm . (32)

We must also require (31) to be BRST-invariant, which allows one to express j in terms

of m and q and also fixes A

A = −
√

2q(j2 −m2)
4m2

k − 2jq2
. (33)

The result for the two-point function corresponding to the shear mode is

Gxaz,xaz(q,w) ∼
w2

(
w2 + 2jq2 − q4

4

)
(w2 + jq2)2

Γ
(
1− 2j+1

k

)
Γ (−2j − 1) Γ2

(
1 + iw2 + j

)
Γ

(
2j+1

k

)
Γ (2j + 2)Γ2

(
−iw2 − j

) , (34)

where

j = −1
2

+

√
1−w2 + q2

2
. (35)

6



and w = w/2πT,q = q/2πT . The Green’s function for the sound mode is computed in a

similar manner. One simply needs to notice that both holomorphic and antiholomorphic

parts of the vertex operator take the form of (32). The result for the Green’s function is

then

Gzz,zz(q,w) ∼

w2
(
w2 + 2jq2 − q4

4

)
(w2 + jq2)2

2

Γ
(
1− 2j+1

k

)
Γ (−2j − 1) Γ2

(
1 + iw2 + j

)
Γ

(
2j+1

k

)
Γ (2j + 2)Γ2

(
−iw2 − j

) .

(36)

We will be mostly interested in the poles of the Green’s functions which correspond

to the excitations without a gap, i.e. the hydrodynamic poles with the property w→0 as

q→0. In this limit j→0. Consider first the shear mode [eq. (34)]. A possible source of

poles is the denominator
(
w2 + jq2

)2. The equation

w2 + jq2 = 0 (37)

has a simple solution w2 = −q4/4, j = q2/4. Hence the denominator appears to contribute

a double pole at

w = ±iq
2

2
. (38)

However, the numerator in the first factor has a simple zero at (38)(
w2 + 2jq2 − q4

4

)
= 0 for w2 = −q4

4
. (39)

Hence the first factor in (34) contributes only a single pole at w given by (38). One of

these poles is cancelled by a zero coming from Γ−2
(
−iw2 − j

)
. Indeed, (38) with a plus

sign is a solution of

−iw
2
− j = 0 . (40)

Therefore we are left with a single hydrodynamic pole at w = −iq2/2.

To summarize, the retarded Green’s function for the shear mode has the form

Gxaz,xaz ∼
1

(w + q)(w − q)(iw − q2

2 )
, (41)

where we only exhibit the structure of poles which correspond to excitations without a

gap. In addition to the poles that correspond to the propagating modes, there is a single

hydrodynamic pole at

ω =
q2

4πT
. (42)
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Comparing with Eq. (5) we find η/s = 1/4π.

Turning to the correlators in the sound channel, we observe that the difference between

Eq. (34) and Eq. (36) is that in Eq. (36) the prefactor is squared. We immediately conclude

that in the hydrodynamic regime the correlator Gzz,zz has the form

Gzz,zz ∼
1

(w + q)(w − q)(iw − q2

2 )2
. (43)

Comparing this to the discussion in Section 3 we find the speed of sound and the ratio of

bulk viscosity to entropy density at T = TH :

vs = 0 ,
ζ

s
= 1/10π . (44)

Note that these results are exact to all orders in 1/k.

Discussion

We have computed transport coefficients in Little String Theory at Hagedorn temperature.

Our result for the correlation function in the sound channel agrees with predictions of

hydrodynamics up to the terms quartic in spatial momentum. To account for those terms,

one needs to improve the hydrodynamic description, possibly by including higher-derivative

terms in the constitutive relation (4). It would certainly be interesting to extend the

analysis to temperatures other than the Hagedorn temperature. This would correspond to

including higher loop corrections in the string amplitudes.

In addition to the seemingly well-defined hydrodynamic poles, for sufficiently large

values of spatial momenta all the correlators have an identical set of singularities, including

the poles on the real axis in the complex ω-plane, and the poles on the negative and positive

imaginary axis. Also, one of the poles in the correlators formally corresponds to a mode

propagating with the speed of light. Normally, retarded correlators cannot have poles

both in the lower and upper half-planes in a stable system, and, moreover, one does not

expect a purely propagating mode to exist in a thermal medium. Since the characteristic

wavelength of the poles with finite gap is
√
kls, it is conceivable that their existence is

related to the non-locality of LST.

Poles of similar nature arise in the correlators of LST in a double scaling limit. Authors

of [6] observed massless poles that do not correspond to physical states in the U(1)k−1

super Yang-Mills theory which naively is supposed to be a good description of LST at

low energies. From the world-sheet point of view, the relevant correlators on the cigar are
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saturated in the bulk, far from the tip. It has been argued in [6] that these poles appear

due to the UV/IR mixing, i.e. highly massive states do not decouple in the infrared of LST.

Massive poles, which are analogous to the non-hydrodynamic poles described at the end of

section 6, were found to be of similar origin [6]. These poles, coming from non-locality and

the UV/IR mixing should be distinguished from the other, more conventional poles, which

correspond to the normalizable states at the tip of the cigar. These poles correspond to

physical states in LST.

The instability of the high-energy phase of LST appears to be similar to that of a

Schwarzschild black hole whose specific heat also diverges to minus infinity as E→∞. We

find it curious that the speed of sound in LST vanishes precisely at Hagedorn temperature.

As we mentioned in the Introduction, in more conventional systems such a behavior might

be associated with a phase transition.

We found that the hydrodynamic pole does not receive α′ (or, equivalently, 1/k) cor-

rections, and the ratio η/s is equal to the universal value 1/4π. This should be contrasted

with the results of [4], where the curvature corrections to the near-extremal D3-branes

were investigated. In [4] it was found that such corrections increase η/s. In the system

with RR flux, turning on α′ corrections is associated with departing from the infinite value

of the t’Hooft coupling in the dual gauge theory. This fits well with the proposal that

the viscosity bound should be saturated in strongly coupled systems. The case without

RR flux studied in this paper appears to be fundamentally different. Indeed, there is no

known way in which the theory on k NS5 branes becomes weakly coupled at large energy

densities, even when k is small. It would be interesting to see what effect lowering energy

density has on the value of η/s.

In [7] a large class of LST vacua dual to string theory compactified on a singular

n-dimensional Calabi-Yau manifold was constructed. The backgrounds considered in [7]

have a general form

Rd−1,1 ×Rφ ×N (45)

where Rφ describes the linear dilaton direction and N defines a superconformal theory

whose detailed properties are discussed in [7]. In (45) d = 10− 2n. Maximally supersym-

metric LST in 5+1 dimensions discussed in our paper correspods to the Calabi-Yau being

a two-dimensional ALE space. (In this case N = SU(2)k). Choosing the Calabi-Yau to

be a singular three-fold can give rise to NS5 branes wrapping various Riemann surfaces.
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String theory calculations in our paper generalize straightforwardly to these cases. In-

deed, introducing finite temperature to the system described by (45) and performing Wick

rotation, we end up with the background

Rd−1 × SL(2)k′

U(1)
×N (46)

where k′ is determined by requiring (46) to be a consistent background for superstring

propagation (total central charge of the worldsheet matter should be equal to 15). The

computations of the stress-energy Green’s function in Section 5 do not involve theN theory,

and therefore are unaltered. Hence, our computation of η/s and ζ/s is valid for a large

class of LSTs. In general, k′ does not need to be an integer. When d ≥ 4, k′ is bounded

from below by k′ = 1, which in d = 4 corresponds to the Calabi-Yau being the singular

conifold. The holographic computation requires j to define non-normalizable state in the

cigar. In the hydrodynamic limit j→0, which indeed corresponds to the non-normalizable

state, as long as k′ ≥ 1. The bound on k′ can be violated when d = 2.
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