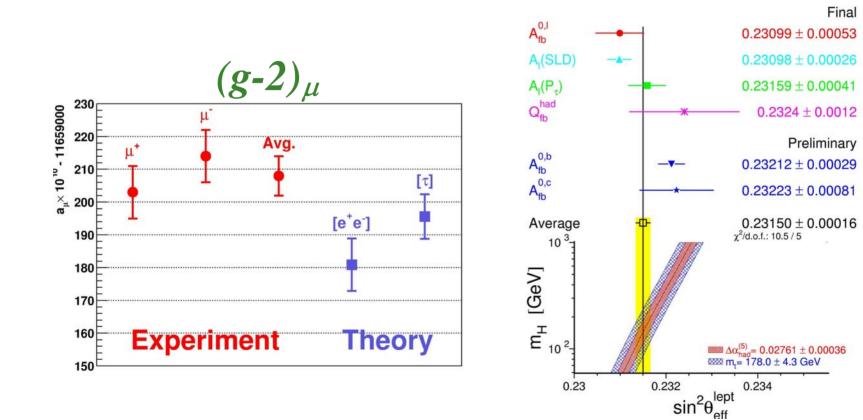
Collider Physics for String Theorists: #2

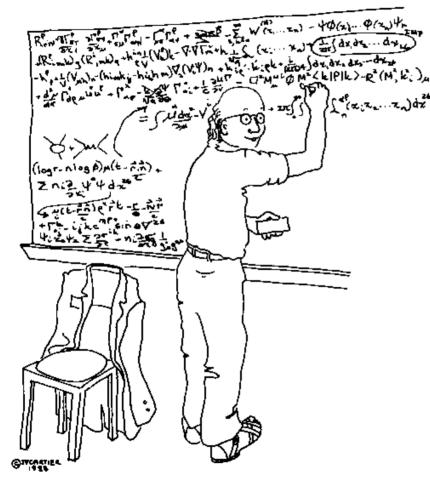
Sally Dawson, BNL

Basics of the MSSM

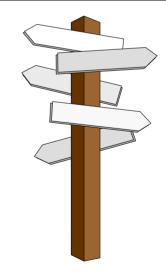
The SM isn't perfect



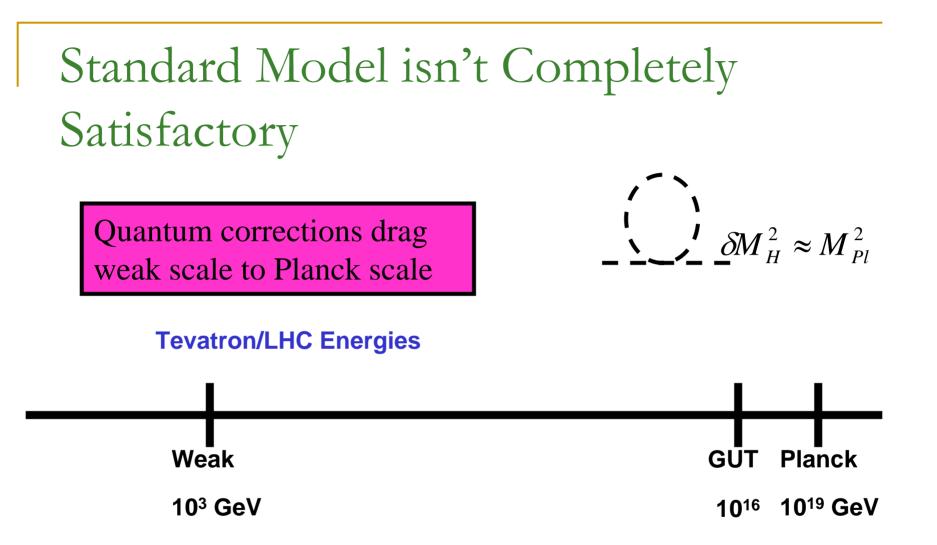
How do we know where to go?

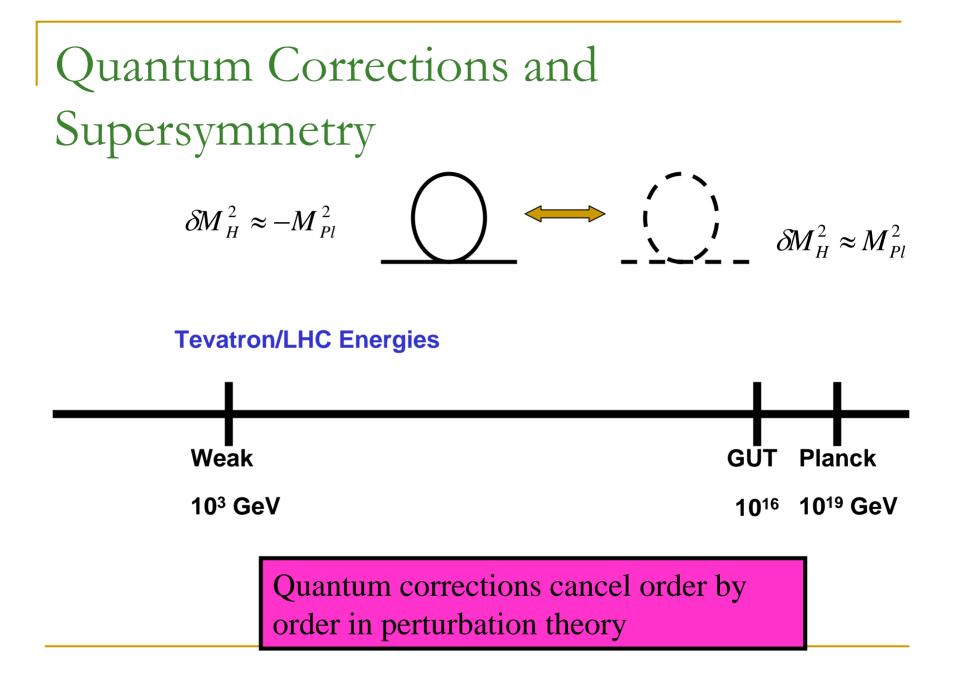


"At this point we notice that this equation is beautifully simplified if we assume that space-time has 92 dimensions." Precision measurements versus direct observation of new particles



Much easier if we see new particles





What about fermion masses?

Fermion mass term:

$$L = m\overline{\Psi}\Psi = m\left(\overline{\Psi}_L\Psi_R + \overline{\Psi}_R\Psi_L\right) \quad \longleftarrow$$

Forbidden by SU(2)xU(1) gauge invariance

- Left-handed fermions are SU(2) doublets $Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L$
- Scalar couplings to fermions:

 $L_d = -\lambda_d \overline{Q}_L \Phi d_R + h.c.$

Effective Higgs-fermion coupling

$$L_d = -\lambda_d \frac{1}{\sqrt{2}} (\overline{u}_L, \overline{d}_L) \begin{pmatrix} 0 \\ v+h \end{pmatrix} d_R + h.c.$$

Mass term for down quark:

$$\lambda_d = -\frac{M_d \sqrt{2}}{v}$$

Fermion Masses, 2

• M_u from $\Phi_c = i\sigma_2 \Phi^*$ (not allowed in SUSY): $L = -\lambda_u \overline{Q}_L \Phi_c u_R + hc$

- Supersymmetric models always have at least two Higgs doublets
 - □ General 2 Higgs doublet potential has 6 couplings + phase
 - □ 5 physical Higgs particles: h, H, A, H[±]
 - VEVS described by $\tan \beta = v_2/v_1$
 - $\square M_W gives v_{SM}^2 = v_1^2 + v_2^2$
 - Supersymmetry restricts form of scalar potential: 2 parameters (Usually taken to be tanβ and M_A)

Particle Content

- Supersymmetric theories constructed from supermultiplets
- Chiral superfield, Φ_i , has:
 - · Complex scalar field, ϕ_i
 - · 2-component Weyl fermion field, ψ_i
 - · Auxiliary Field, F_i (no kinetic energy term)
- Interactions described in terms of chiral superfields

$$\Phi_{i}(x) \equiv \phi_{i}(x) + \sqrt{2}\theta\psi_{i}(x) + \theta\theta F_{i}(x)$$

[Taylor series stops at θ^2 since θ is anti-commuting Grassman variable, $\theta^3 = \frac{\theta}{2} \{\theta, \theta\}$]

- Components of Φ have identical quantum numbers (except spin) and masses
- Construct model with supermultiplets corresponding to known particles
- More than doubles spectrum

Chiral Superfields

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{Q}	3	2	$\frac{1}{6}$	$(u_L,d_L), \; (ilde{u}_L, ilde{d}_L)$
\hat{U}^{c}	3	1	$-\frac{2}{3}$	$\overline{u}_R,~ ilde{u}_R^*$
\hat{D}^c	3	1	$\frac{1}{3}$	$\overline{d}_R,\; ilde{d}_R^*$
\hat{L}	1	2	$-\frac{1}{2}$	$(u_L,e_L),\;(ilde{ u}_L, ilde{e}_L)$
\hat{E}^{c}	1	1	1	$\overline{e}_R,~\widetilde{e}_R^*$
\hat{H}_1	1	2	$-\frac{1}{2}$	$(H_1, ilde{h}_1)$
\hat{H}_2	1	2	$\frac{1}{2}$	$(H_2, ilde{h}_2)$

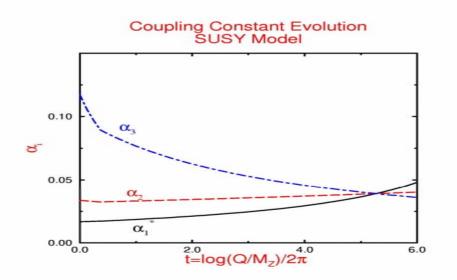
Unification

- Gauge couplings evolve differently in SUSY models
- Running is slower than SM

$$b_1 = 2N_g + \frac{3N_h}{10}$$

$$b_2 = -6 + 2N_g + \frac{N_h}{2}$$

$$b_3 = -9 + 2N_g$$



The Cynic

- Assume supersymmetric at some scale, Λ_{SUSY} (say 1 TeV)
- Input 2 couplings, say g_1, g_2 , at M_Z
- Evolve couplings until they meet at scale M_{GUT}
- Assume unification at M_{GUT} , $g_i(M_{GUT}) = g_{GUT}$
- Evolve 3rd coupling, say g_3 , down to M_Z
- If $g_3(M_Z)$ disagrees with measured number, change Λ_{SUSY}
- Keep going until it works!

Amazing fact: consistency occurs for $\Lambda_{SUSY} \sim 1 \ TeV$

(Actually, $\alpha_s(M_z)$ typically a little large)

Scalar Interactions

Define superpotential:

$$W = \frac{1}{2}M^{ij}\phi_i\phi_j + \frac{g^{ijk}}{6}\phi_i\phi_j\phi_k$$

• Most general $SU(3) \times SU(2)_L \times U(1)_Y$ invariant superpotential:

(Hats denote scalar component of supermultiplet)

$$W = -\epsilon_{ij}\mu\hat{H}_{1}^{i}\hat{H}_{2}^{j} + \epsilon_{ij}\left[\lambda_{L}\hat{H}_{1}^{i}\hat{L}^{cj}\hat{E}^{c} + \lambda_{D}\hat{H}_{1}^{i}\hat{Q}^{j}\hat{D}^{c} + \lambda_{U}\hat{H}_{2}^{j}\hat{Q}^{i}\hat{U}^{c}\right] + \epsilon_{ij}\left[\lambda_{1}\hat{L}^{i}\hat{L}^{j}\hat{E}^{c} + \lambda_{2}\hat{L}^{i}\hat{Q}^{j}\hat{D}^{c}\right] + \lambda_{3}\hat{U}^{c}\hat{D}^{c}\hat{D}^{c}$$

i, j SU(2) indices

• Superpotential has Yukawa interactions of fermions with scalars and quartic interactions of potential:

$$\mathcal{L}_W = -\sum_i |\frac{\partial W}{\partial \phi_i}|^2 - \frac{1}{2} \sum_{ij} \left[\frac{\partial^2 W}{\partial \phi_i \partial \phi_j} \psi_i \psi_j + \text{c.c.} \right]$$

Aside on R Parity

Allowed terms in superpotential:

$$W_{RP} = \lambda_1^{ijk} \hat{L}^i \hat{L}^j \hat{E}^c + \lambda_2^{ijk} \hat{L}^i \hat{Q}^j \hat{D}^c + \lambda_3^{ijk} \hat{U}^c \hat{D}^c \hat{D}^c$$

• W_{RP} gives lepton/baryon number violating interactions

 $\mathcal{L} \sim \lambda_2 u_L e_L \tilde{d}_R^* + \lambda_3 \overline{u}_R \overline{d}_R \tilde{d}_R^*$

- Could just make coefficients small
- Limits on proton decay require:

$$\mid \lambda_{2}^{11i} \lambda_{3}^{11i} \mid < 10^{-27} \left(\frac{M_{\tilde{d}_{i}}}{100 \ GeV} \right)^{2}$$

Impose symmetry which forbids W_{RP}

- R parity is multiplicative quantum number: Discrete Z_2 symmetry
- Imposed by hand

$$R \equiv (-1)^{3(B-L)+2s}$$

Consequences of R Parity

- SM particles have R = 1, SUSY partners have R = -1
- $\theta \to -\theta$ does same thing

$$\Phi_{i}(x) \equiv \phi_{i}(x) + \sqrt{2\theta\psi_{i}(x)} + \theta\theta F_{i}(x)$$

• SM dimension- 4 baryon/lepton number violating interactions forbidden by the gauge symmetries

Consequences of R parity:

- SUSY partners are pair produced
- Lightest SUSY particle (LSP) is stable

Add Gauge Fields

Add:

- Massless gauge boson, A^a_μ
- 2-component Weyl fermion gaugino, λ^a (adjoint representation of group)
- Auxilliary Field, D^a (adjoint representation of group; $[mass]^2$)

Gauge invariant interactions are:

$$\mathcal{L}_{gauge} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} - i\lambda^{\dagger a} \overline{\sigma}^{\mu} D_{\mu} \lambda^a + \frac{1}{2} D^a D^a$$

As usual:

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} - gf^{abc}A^{b}_{\mu}A^{c}_{\nu}$$
$$D_{\mu}\lambda^{a} = \partial_{\mu}\lambda^{a} - gf^{abc}A^{b}_{\mu}\lambda^{c}$$

Gauge Multiplets of MSSM

Superfield	SU(3)	$SU(2)_L$	$U(1)_Y$	Particle Content
\hat{G}^a	8	1	0	$g,~ ilde{g}$
\hat{W}^i	1	3	0	$W_i,~\widetilde{\omega}_i$
\hat{B}	1	1	0	$B, ilde{b}$

Construct Gauge-Scalar Interactions

$$\mathcal{L} = \mathcal{L}_{gauge} + \mathcal{L}_{chiral} - \sqrt{2}g \left[(\phi^* T^a \psi) \lambda^a + \lambda^{\dagger a} \left(\psi^{\dagger} T^a \phi \right) \right] + g \left(\phi^* T^a \phi \right) D^a$$

What about terms involving D^a ?

$$\mathcal{L} \sim \frac{1}{2} D^a D^a + g \left(\phi^* T^a \phi \right) D^a$$

Use equation of motion:

$$D^a = -g\left(\phi^* T^a \phi\right)$$

Complete scalar potential:

$$V(\phi, \phi^*) = F^{*i}F_i + \frac{1}{2}D^a D^a = W_i^*W^i + \frac{1}{2}\Sigma_a g_a^2 (\phi^*T^a\phi)^2$$

Construct Scalar Potential

 $W \sim -\epsilon_{ij}\mu \hat{H}_1^i \hat{H}_2^j + \dots$ $V_F = \sum_i |\frac{\partial W}{\partial \phi_i}|^2$ $= |\mu|^2 \left(|H_1|^2 + |H_2|^2\right)$

"D Terms"

"F-Term":

$$V_D = \frac{1}{2} D^a D^a$$
$$D^a = -g_a \phi_i^* T^a \phi_i$$

 H_1 has $Y = -\frac{1}{2}$ H_2 has $Y = +\frac{1}{2}$

$$U(1): \quad D' = \frac{g}{2} \left(|H_2|^2 - |H_1|^2 \right)$$

SU(2):
$$D^a = \frac{g}{2} \left(H_1^{i*} \sigma_{ij}^a H_1^j + H_2^{i*} \sigma_{ij}^a H_2^j \right)$$

(Normalization $T^a = \frac{\sigma^a}{2}$)

SU(2) identity: $\sigma^a_{ij}\sigma^a_{kl} = 2\delta_{il}\delta_{jk} - \delta_{ij}\delta_{kl}$

$$V_D = \frac{g^2}{8} \left(4 \mid H_1^* \cdot H_2 \mid^2 -2 \left(H_1^* \cdot H_1 \right) \left(H_2^* \cdot H_2 \right) + \left(\mid H_1 \mid^2 \right)^2 + \left(\mid H_2 \mid^2 \right) \right) \\ + \frac{g'^2}{8} \left(\mid H_2 \mid^2 - \mid H_1 \mid^2 \right)^2$$

Scalar Potential, #2

$$V = |\mu|^{2} \left(|H_{1}|^{2} + |H_{2}|^{2} \right) + \frac{g^{2} + g^{\prime 2}}{8} \left(|H_{2}|^{2} - |H_{1}|^{2} \right)^{2} + \frac{g^{2}}{2} |H_{1}^{*} \cdot H_{2}|^{2}$$

Minimum at $\langle V \rangle = \langle H_1 \rangle = \langle H_2 \rangle = 0$

No EWSB, No SUSY breaking....

SUSY Breaking

Spontaneous SUSY doesn't work

Scalar potential:

 $V(\phi, \phi^*) = F^{*i}F_i + \frac{1}{2}D^a D^a = W_i^*W^i + \frac{1}{2}\Sigma_a g_a^2 (\phi^*T^a \phi)^2$ [W is superpotential, $W^i = \frac{\partial W}{\partial \phi_i} = M^{ij}\phi_j + \frac{g^{ijk}}{2}\phi_j\phi_k$]

SUSY spontaneously broken if either:

 $\begin{array}{ll} \langle 0 \mid F_i \mid 0 \rangle \neq 0 & \text{O'Raifeartaigh} \\ \langle 0 \mid D^a \mid 0 \rangle \neq 0 & \text{Fayet-Iliopoulos} \end{array}$

Generates bad mass relations

Spontaneously Broken SUSY = BAD

Define supertrace:

$$\begin{split} STr\left(M^2\right) &\equiv \sum \left(-1\right)^{2s} \left(2s+1\right) Tr\left(M^2\right) \\ &= 3Tr\left(M_V^2\right) + Tr\left(M_\phi^2\right) - 2TrM_F^2 \\ &= 0 \end{split}$$

- Holds for arbitrary values of scalar fields
- Holds separately for gauge and matter sector

$$\tilde{m}_{e_L}^2 + \tilde{m}_{e_R}^2 = 2m_e^2$$

Softly Broken SUSY

Consider low scale SUSY (~ 1 TeV) as effective theory

- Break SUSY "softly" (terms of dimension ≤ 3)
- Add all possible terms which introduce $\log(\Lambda)$ divergences, but not Λ^2

Allowed terms:

- Scalar Masses $(\phi^*\phi, \phi\phi)$
- Gaugino masses $(\lambda^a \lambda^a)$
- Cubic scalar couplings $(\phi_i \phi_j \phi_k)$

Theorem: Introduction of soft terms doesn't reintroduce Λ^2 divergences to all orders of PT in SUSY

Parameters of the MSSM

• 5 3 \times 3 Hermitian mass matrices for squarks and sleptons:

$$\begin{split} M_{\tilde{Q}}^2 \tilde{Q}^* \tilde{Q} + M_{\tilde{u}}^2 \tilde{u}_R^* \tilde{u}_R + M_{\tilde{d}}^2 \tilde{d}_R^* \tilde{d}_R + M_{\tilde{L}}^2 \tilde{L}^* \tilde{L} + M_{\tilde{e}}^2 \tilde{e}_R^* \tilde{e}_R \\ (45 \text{ new parameters}) \end{split}$$

- 2 (complex) Higgs scalar masses $m_1^2 H_1^2 + m_2^2 H_2^2$
 - (4 new parameters)
- 3 gaugino masses (complex) $\Sigma_{a=1,2,3} M^a_{1/2} \lambda^a \lambda^a$

(6 new parameters)

• 1 complex Higgs mixing parameter $m_{12}^2 H_1 H_2$

(2 new parameters)

• 27 trilinear couplings for scalar fields (complex) $H_2 \tilde{Q} A_u \tilde{u}_R + H_1 \tilde{Q} A_d \tilde{d}_R + H_1 \tilde{L} A_l \tilde{e}_R$ (54 new parameters)

111 new parameters

SM has 17 parameters \longrightarrow 128 parameters

Soft SUSY Breaking Terms Allow SSB

$$V = \left(m_1^2 + |\mu|^2\right) |H_1|^2 + \left(m_2^2 + |\mu|^2\right) |H_2|^2$$

- $m_{12}^2 \left(\epsilon_{ij} H_1^i H_2^j + h.c.\right)$
+ $\frac{g^2 + g'^2}{8} \left(|H_2|^2 - |H_1|^2\right)^2 + \frac{g^2}{2} |H_1^* \cdot H_2|^2$

$$H_1 = \begin{pmatrix} \phi_1^{0*} \\ -\phi_1^- \end{pmatrix} \qquad H_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$$
$$\langle H_1^1 \rangle = v_1 \qquad \langle H_2^2 \rangle = v_2$$

Potential has 3 parameters. Trade 1 for $\tan \beta = \frac{v_2}{v_1}$ Conditions for EWSB:

 \longrightarrow if $m_{12}^2 = 0$ potential positive definite

"D-flat" direction: $|H_1^0| = |H_2^0|$ \longrightarrow quartic contributions vanish

Quadratic term in this direction must be positive:

$$m_1^2 + m_2^2 + 2 \mid \mu \mid^2 > 2m_{12}^2$$

Broken $SU(2) \times U(1)$:

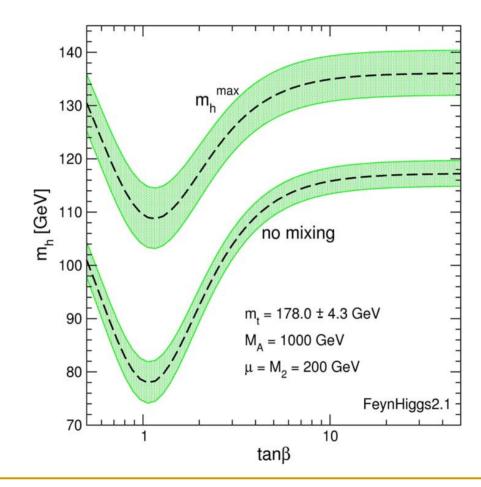
 $\left(m_1^2 + \mid \mu^2 \mid\right) \left(m_2^2 + \mid \mu \mid^2\right) < \mid m_{12} \mid^2$

Constrained Potential in MSSM

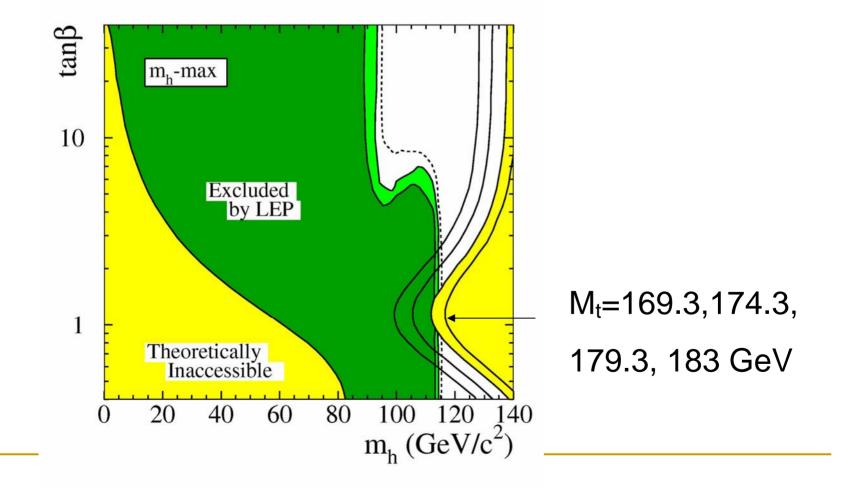
- □ Tree level scalar potential has 2 free parameters
- $V = m_1^2 H_1 H_1^+ + m_2^2 H_2 H_2^+ m_{12}^2 (\varepsilon_{ab} H_1^a H_2^b + h.c.) + \left(\frac{g^2 + g^2}{8}\right) (H_1 H_1^+ H_2 H_2^+)^2 + \left(\frac{g^2}{2}\right) (H_1 H_1^+ H_2 H_2^+)^2 (H_1 H_2^+)^2 + \left(\frac{g^2}{2}\right) (H_1 H_1^+ H_2 H_2^+)^2 (H_1 H_2^+)^2 + \left(\frac{g^2}{2}\right) (H_1 H_1^+ H_2 H_2^+)^2 (H_1 H_2^+)^2 ($
 - \Box Typically pick M_A, tan β as parameters
 - Predict M_h , M_H , $M_{H\pm}$, all couplings (at tree level)
 - At tree level, $M_h < M_Z$
 - \Box Large corrections O(G_Fm_t²) to predictions
 - Predominantly from stop squark loop

$$M_h^2 \le M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2 \sin^2 \beta} \ln \left[\frac{\widetilde{m}_t^2}{m_t^2}\right] + \dots$$

Theoretical Upper bound on M_h

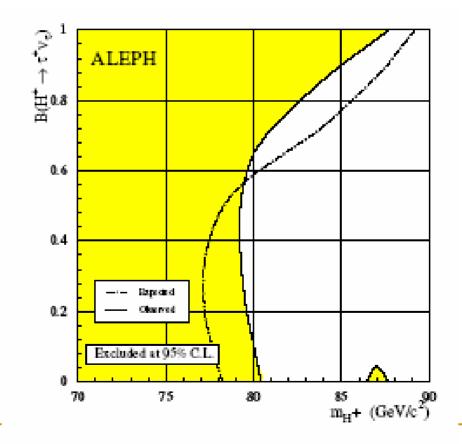


Limits on SUSY Higgs from LEP



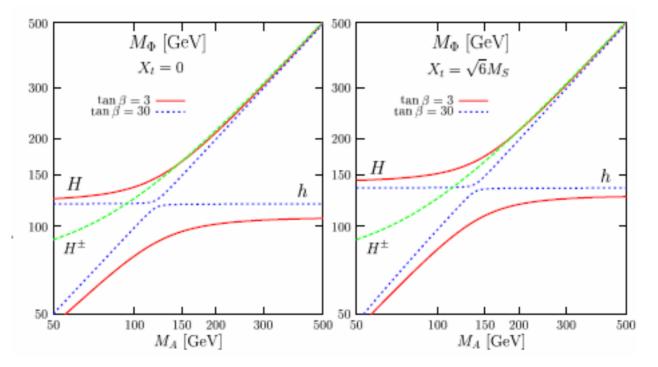
Bound on Charged Higgs

Fairly model independent



Higgs Masses in MSSM

$$M_{H^{\pm}}^{2} = M_{A}^{2} + M_{W}^{2}$$



Find Higgs Couplings

Find Higgs couplings:

$$\mathcal{L}_{W} = \frac{\partial^{2} W}{\partial \phi_{i} \partial \phi_{j}} \psi_{i} \psi_{j} + \text{c.c.}$$
$$W \sim \epsilon_{ij} \left[\lambda_{L} \hat{H}_{1}^{i} \hat{L}^{cj} \hat{E}^{c} + \lambda_{D} \hat{H}_{1}^{i} \hat{Q}^{j} \hat{D}^{c} + \lambda_{U} \hat{H}_{2}^{j} \hat{Q}^{i} \hat{U}^{c} \right]$$

Yukawa interactions give mass matrices:

$$m_{d} = \lambda_{D} v_{1} \qquad \lambda_{D} = \frac{g m_{d}}{\sqrt{2} \sin \beta M_{W}}$$
$$m_{u} = \lambda_{U} v_{2} \qquad \lambda_{U} = \frac{g m_{u}}{\sqrt{2} \cos \beta M_{W}}$$

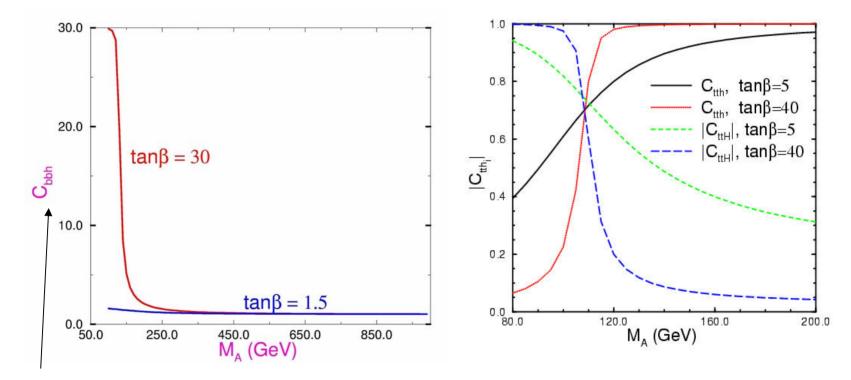
MSSM Couplings

Φ	g⊕uu	g⊕dd	₿₽VV	Ø⊕ZA
h	$\frac{\cos\alpha}{\sin\beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\sin(\beta-\alpha)$	$\frac{1}{2}\cos(\beta-\alpha)$
Н	$\frac{\sin\alpha}{\sin\beta}$	$\frac{\cos\alpha}{\cos\beta}$	$\cos(\beta - \alpha)$	$\frac{1}{2}\sin(\beta-\alpha)$
А	$i\gamma_5 \cot eta$	$-i\gamma_5\coteta$	0	0

>Couplings given in terms of α , β

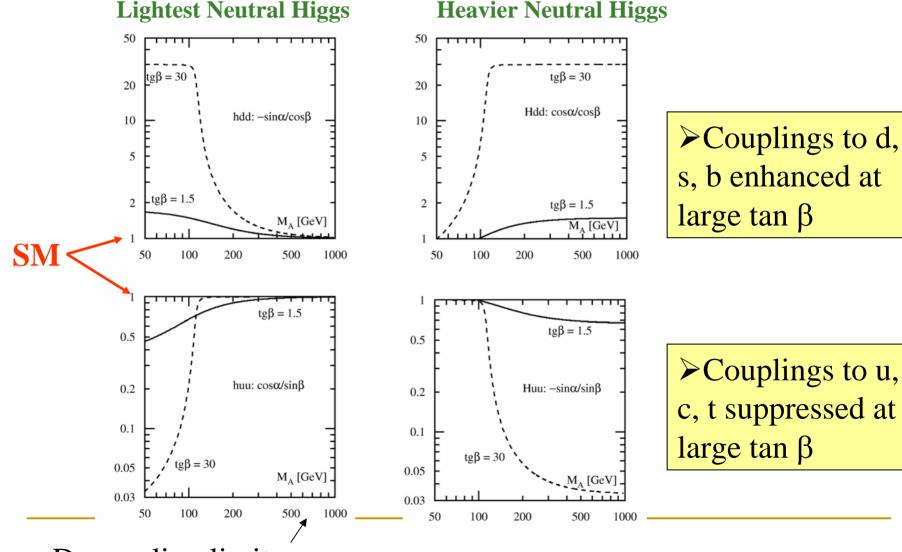
≻Can be very different from SM

Higgs Couplings very different from SM in SUSY Models

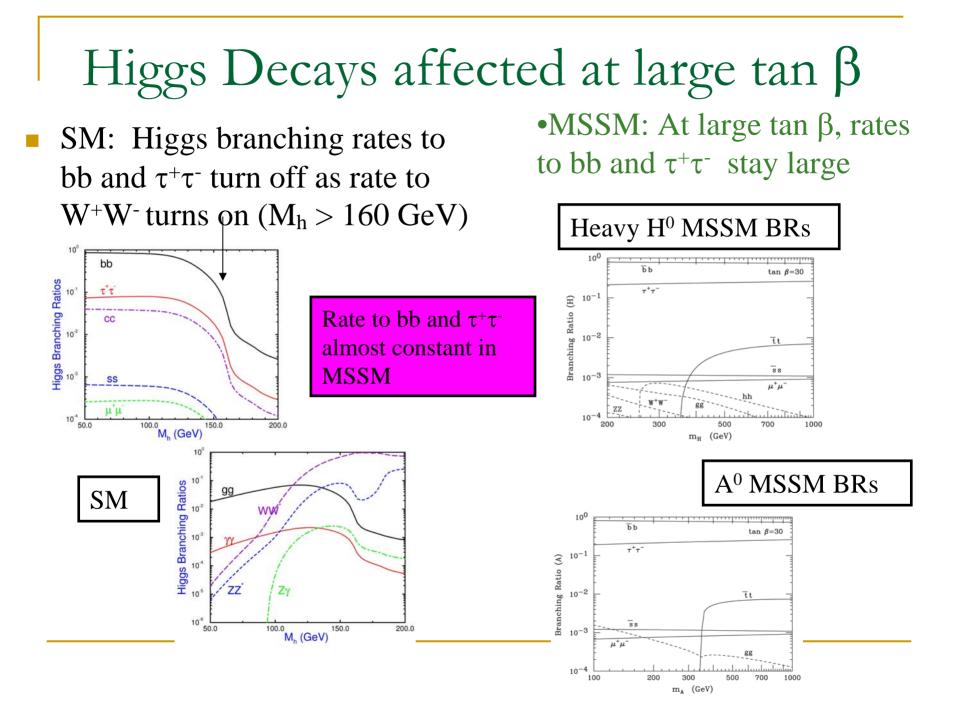


Ratio of h coupling to b's in SUSY model to that of SM

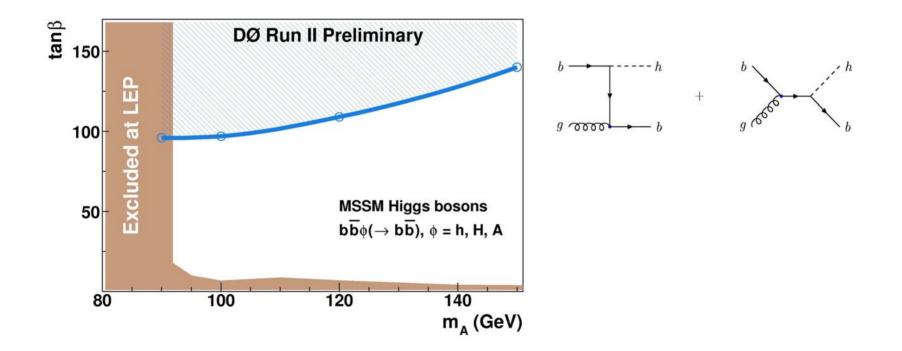
Higgs Couplings different in MSSM



Decoupling limit

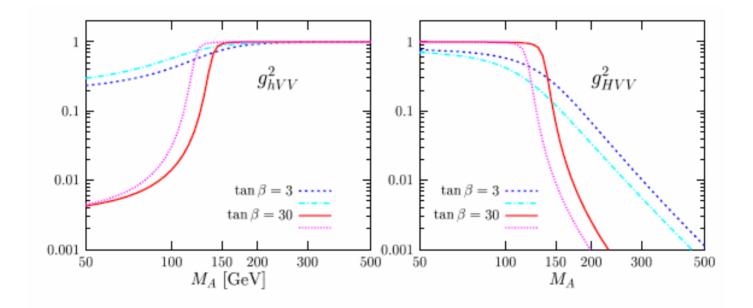


New Discovery Channels in SUSY

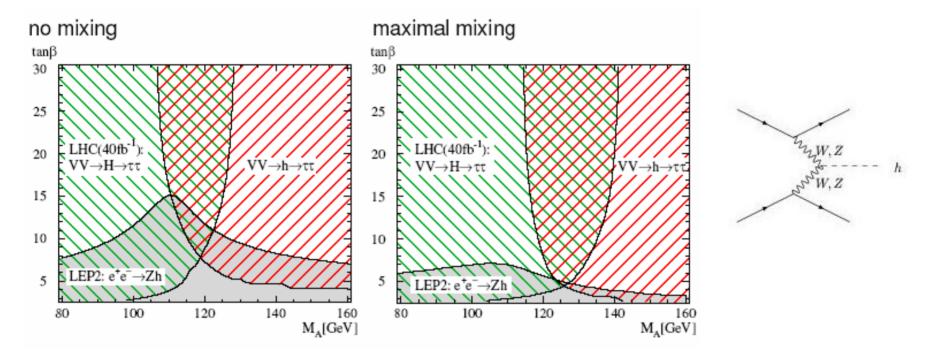


Gauge Coupling Constants

- $g_{hVV}^2 + g_{HVV}^2 = g_{hVV}^2(SM)$
- Vector boson fusion and Wh production always suppressed in MSSM



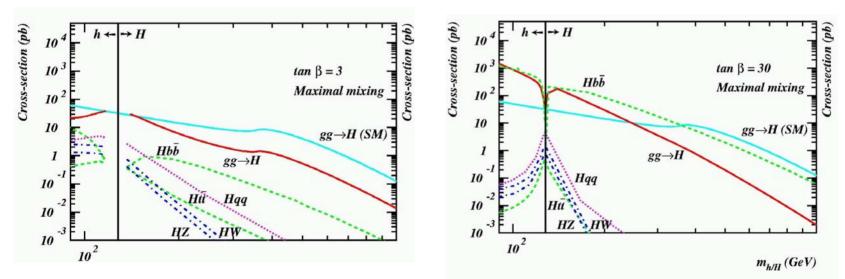
LHC can find h or H in weak boson fusion



Decays to $\tau^+\tau^-$ needed

Production of SUSY Higgs Bosons

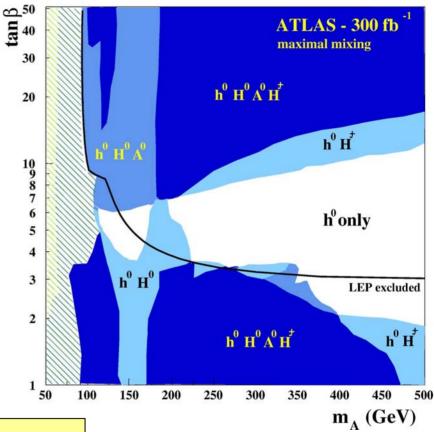
- \succ For large tan β , dominant production mechanism is with b's
- > bbh can be 10x's SM Higgs rate in SUSY for large tan β



LHC

MSSM discovery

- For large fraction of M_Atanβ space, more than one Higgs boson is observable
- For $M_A \rightarrow \infty$, MSSM becomes SM-like
- Plot shows regions where Higgs particles can be observed with $> 5\sigma$



Need to observe multiple Higgs bosons and measure their couplings

Add Scalars to MSSM

- Add Higgs singlet S, triplets $T_0, T_{\pm 1}$
- Superpotential, $W = \lambda_1 H_u H_d S + \lambda_2 H_u T_0 H_d$ $+ \chi_1 H_u T_1 H_u + \chi_2 H_d T_{-1} H_d$
- At tree level, lightest Higgs mass bound becomes, $M_{H}^{2} \le M_{Z}^{2} \cos^{2} 2\beta + v^{2} (\lambda_{1}^{2} + \frac{\lambda_{2}^{2}}{2}) \sin^{2} 2\beta$ $+ 4v^{2} (\chi_{1}^{2} \cos^{4} \beta + \chi_{2}^{2} \sin^{4} \beta)$
- Higgs mass bound depends on particle content
 - □ Assume couplings perturbative to M_{GUT} and SUSY scale ≈ 1 Tev

 $M_h < 150 - 200$ GeV with singlet and triplet Higgs

Looking For Gluinos

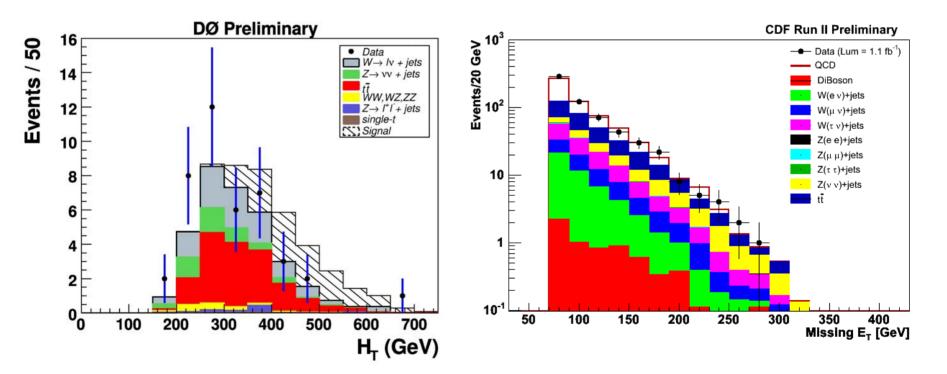
• $gg, q\overline{q} \to \tilde{g}\tilde{g}$ couplings fixed by gauge invariance • Gluinos are Majorana

$$\Gamma\left(\tilde{g} \to l^+X\right) = \Gamma\left(\tilde{g} \to l^-X\right)$$

• Classic signature is same sign lepton production

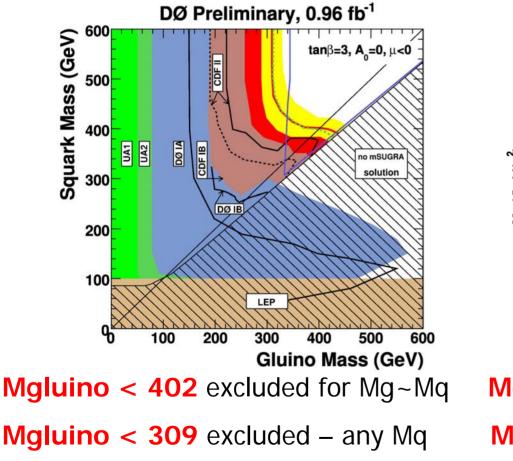
Search for Squark/Gluino Production

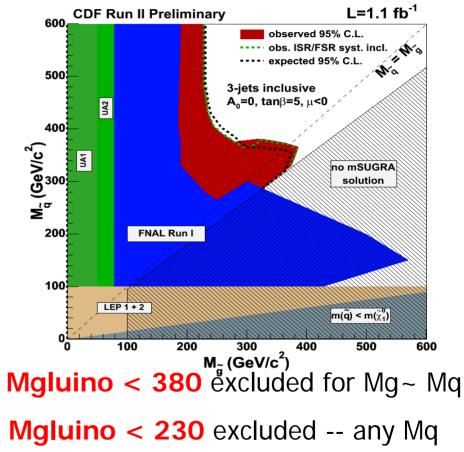
- Generic squark/gluino production → energetic jets & large missing E_T
 - Difficult because of large QCD background



 $HT = scalar sum of E_T of jets$

Limits on Squark/Gluino Production





Charginos

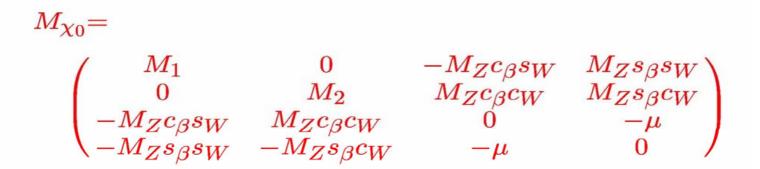
- Fermionic partners of W^{\pm} mix with charged fermion partners of Higgs
- Mass eigenstates called charginos

$$\tilde{M}_{\chi^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$

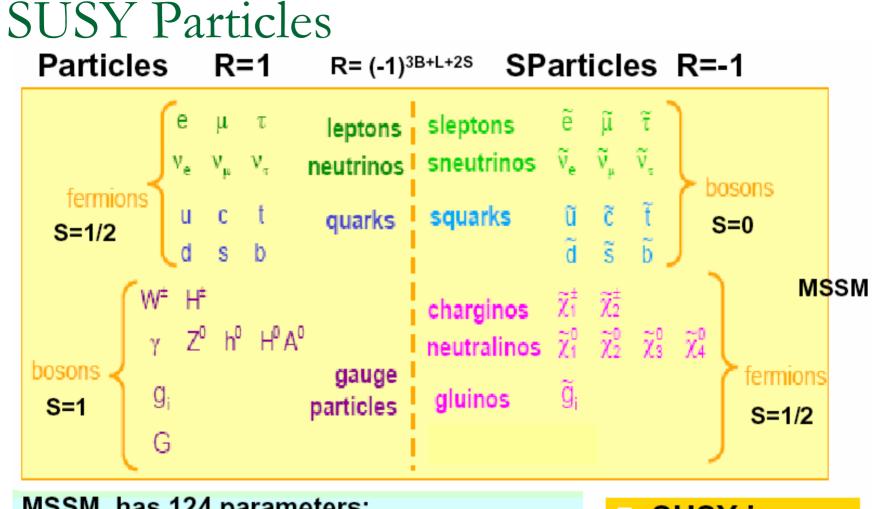
Neutralinos

• Neutral fermions mix:

 $\left(\tilde{B}, \tilde{W}^0, \tilde{H}^0_1, \tilde{H}^0_2\right)$



• Usually assume lightest SUSY particle is lightest χ^0



MSSM has 124 parameters: M₁,M₂, M₃, Gaugino masses, Sfermion masses tanβ, μ, m_A Higgs(ino) mass/mixing A₂, A_b, A₄ (+45 RPV) SUSY is a broken symmetry

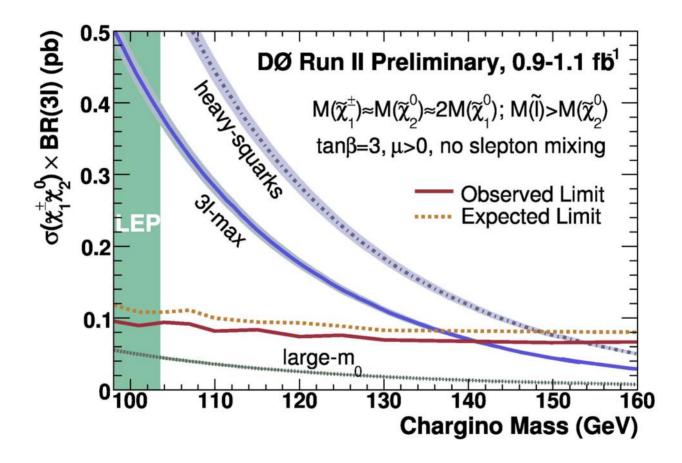
Chargino-Neutralino Production

 Trileptons from charginoneutralino production: Classic signature



Clear signature – 3 isolated leptons, missing E_T

Tevatron Limits on Tri-leptons



Too Many Unknowns...

Assume soft parameters unify:

Model specified by:

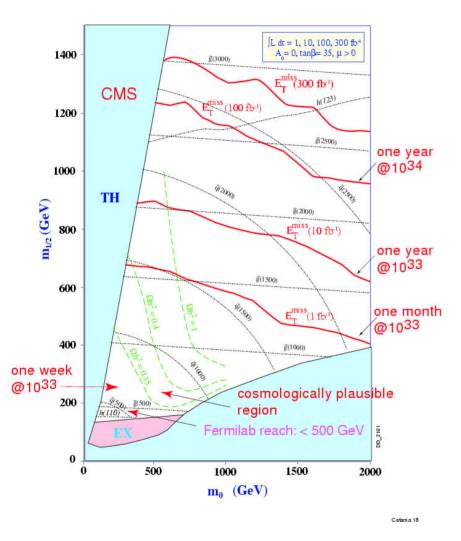
- Common scalar mass, \tilde{m}_0
- Common gaugino mass, $M_{1/2}$
- 1 Higgs mass, m_{12}^2
- 1 tri-linear coupling, $A_0\lambda_F$

This model often called mSUGRA, CMSSM

Evolve all masses to M_Z with boundary condition at M_G :

$$\begin{split} M_{\tilde{Q}}^{2} \left(M_{G} \right) &= M_{\tilde{u}}^{2} \left(M_{G} \right) = M_{\tilde{d}}^{2} \left(M_{G} \right) = \\ M_{\tilde{L}}^{2} \left(M_{G} \right) &= M_{\tilde{e}}^{2} \left(M_{G} \right) = \tilde{m}_{0}^{2} \\ m_{1}^{2} \left(M_{G} \right) &= m_{2}^{2} \left(M_{G} \right) = \tilde{m}_{0}^{2} \\ M_{1} \left(M_{G} \right) &= M_{2} \left(M_{G} \right) = M_{3} \left(M_{G} \right) = M_{1/2} \\ m_{12}^{2} \left(M_{G} \right) &= m_{12}^{2} \\ A_{i} \left(M_{G} \right) = A_{0} \lambda_{i} \end{split}$$

LHC/Tevatron will find SUSY



- Discovery of many SUSY particles is straightforward
- Untangling spectrum is difficult

⇒ all particles produced together

 SUSY mass differences from complicated decay chains;eg

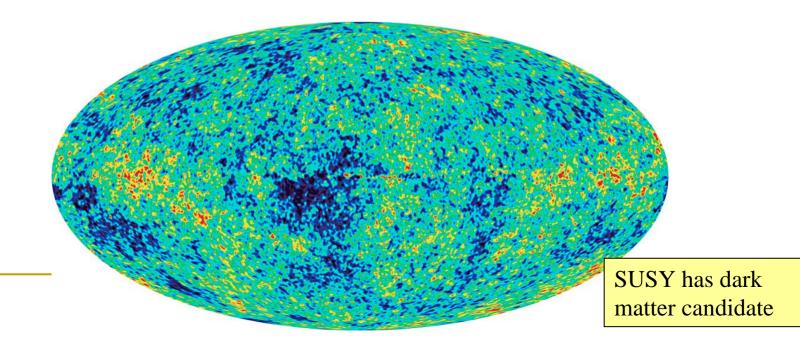
$$\widetilde{q}_{L} \to \widetilde{\chi}_{2}^{0} q \to \widetilde{l}^{\pm} l^{\mp}$$
$$\to \widetilde{\chi}_{1}^{0} l^{+} l^{-} q$$

M_{χ0} limits extraction of other masses

SM is incomplete

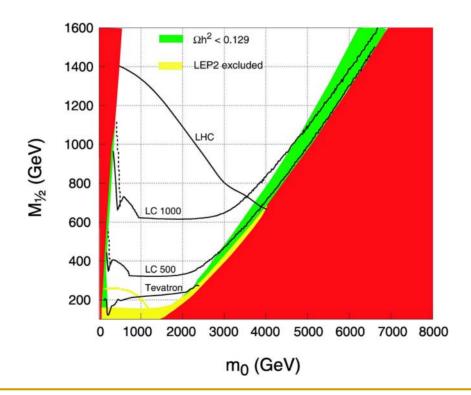
•23% of universe is cold dark matter: $\Omega_{CDM}h^2 = .1126^{+.0161} - .0181$

No dark matter candidate in SM



MSSM has dark matter candidate

 LSP: Lightest supersymmetric particle, χ₀ is neutral and stable (in models with R parity)



Supersymmetry (MSSM version)

