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Puff Field Theory (PFT) is a conjectured nonlocal, Lorentz violating, but rotationally invariant,
quantum field theory, decoupled from gravity. It was constructed from string theory in references [1]-
[2], on which this short summary is based.

We start with type-IIA compactified on T 3 in the form of S1×S1×S1 with compactification radii
R′

i (i = 1, 2, 3) and string coupling constant g′st. We add a geometric twist as follows. Let x1, x2, x3

be the compact coordinates on T 3 with periodicities 2πR1, 2πR2, 2πR3 and let ~y denote the vector
of coordinates in the six transverse directions. We then replace the original periodicity conditions
of T 3 with

(x1, x2, x3, ~y) ∼ (x1 + 2πR1, x2, x3, Ω~y),

where Ω is some element of the rotation group SO(6), which can be extended to act on fermions
by taking Ω ∈ Spin(6). Next, we add N Kaluza-Klein particles in the 1st direction and look for the
low-energy description of this configuration in the limit

α′−1/2R′
1 −→ 0, α′−1/2R′

2 → finite, α′−1/2R′
3 → finite, g′st → finite, (1)

combined with

Ω = exp
(

2πα′−
13
4 g′st

−1
2 R′

1

3
2 R′

2R
′
3ζ

)
−→ I, ζ → finite. (2)

Here, ζ is an element of the Lie algebra so(6) ' su(4), and the cumbersome factor in front of it will
be discussed later. Note that if ζ is in an appropriate su(3) (su(2)) subgroup of so(6) then N = 1
(N = 2) SUSY is preserved, respectively.
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When ζ = 0, it is not hard to see that the low-energy description is simply 3+1D U(N) N = 4
SYM. The boundary conditions are periodic, and T-duality in the 1st direction, followed by S-
duality, followed by T-dualities in the 2nd and 3rd directions, convert the system to N D3-branes
in type-IIB compactified on T 3 with compactification radii

R1 = α′
3
4 g′st

−1
2 R′

1
−1

2 , Rk = α′
5
4 g′st

1
2 R′

1
−1

2 R′
k
−1

, (k = 2, 3), (3)

and string coupling constant gst = α′R′
3
−1R′

2
−1. The limit (1) was chosen so that the ratios R2/R1

and R3/R1 and the coupling constant gst remain finite, while α′−1/2Rk −→ ∞ (k = 1, 2, 3). For
nonzero ζ, U-duality is less useful in the limit (1). However, we will argue below that the low-energy
limit still describes a decoupled QFT on R3,1, but a nonlocal one. We will define R1, R2, R3 as in
(3), even for ζ 6= 0. The cumbersome factor in the exponent of (2) then simplifies to (2π/R1R2R3)ζ.

The string-theory construction of PFT described above was inspired by the Douglas-Hull con-
struction [3] of NCSYM (super Yang-Mills theory on a noncommutative space), and by Witten’s
construction of the duals of (p, q) 5-branes [4].

We now proceed to study some simple aspects of PFT. If ζ is chosen appropriatedly, we get N = 2
supersymmetric PFT, and we can calculate the energies of BPS states that include electric and
magnetic fluxes, as well as momentum. If we express ζ as an su(2) ⊂ su(4) matrix, it has eigenvalues
±β. Suppose we have ` units of R-charge, ki units of momentum, ei units of electric flux, and mi

units of magnetic flux in the ith direction, for i = 1, 2, 3. (All of these are integers and are associated
with Kaluza-Klein, D-brane, or string charges in the string theory construction.) With the notation
V ≡ R1R2R3, and

P ≡
3∑

i=1

ki

Ri
n̂i, E ≡

3∑

i=1

eiRi

2πV
n̂i, B ≡

3∑

i=1

miRi

2πV
n̂i,

we get the BPS energy

E =
2`β

gstα′2
+

2π2V 2

|NV + 2`β|
(

g2
YM

2π
E2 +

2π

g2
YM

B2

)
+ |P− 4π2V 2

|NV + 2`β|E×B|.

Analogous formulas for NCSYM have been derived, for instance, in [5]-[7]. We see from the last
term that the dispersion relation of massless Kaluza-Klein particles remains relativistic. The com-
bination NV +2`β, which appears in the denominator of various terms in the BPS formula, suggests
that ` units of R-charge formally carry an intrinsic volume of 2`β. For more motivation for this
interpretation, see [1].

The supergravity dual of PFT, found using the string theory construction in a way similar to [8]-[9],
is given by

ds2 =
R2

r2
K− 1

2

[
dx2 + dy2 + dz2 − (

dt− 4πN

r2
~nT ζd~n

)2
]

+
R2

r2
K

1
2 dr2 + R2K

1
2 dΩ2

5 ,

C ′
4 =

πN

r4
K−1dt ∧ dx ∧ dy ∧ dz − πN

gstα′2r6
K−1~nT ζd~n ∧ dx ∧ dy ∧ dz, (4)
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where C ′
4 is the RR flux, and

K ≡ 1 +
16π2N2

r6
~nT ζT ζ~n, ~n ∈ S5, dΩ2

5 =
6∑

I=1

dn2
I , R4 ≡ 4πgstNα′2 .

The IR fixed-point, which can be read-off from the supergravity dual, is N = 4 SYM. At higher
energy scales, the deviation of PFT from N = 4 SYM is parameterized by ζ, which has dimensions
of volume. To lowest order in ζ, PFT is therefore a deformation of N = 4 SYM by an IR-irrelevant
operator of dimension 7. The form of this operator can be found in [2]. It involves a coupling of
the energy-momentum tensor to the R-symmetry current.

In the UV limit the supergravity dual becomes singular. However, at a somewhat relaxed level of
rigor, it is possible to dualize the extreme UV region to a weakly coupled M-theory background,
at least for a special choice of ζ which preserves a u(3) ⊂ so(6) subgroup of the R-symmetry. The
advantange of this choice of ζ is that it is compatible with the Hopf-fibration of S5. The duality
that converts (4) to a weakly coupled background can be described as T-duality along the fiber of
the Hopf-fibration and a lift to M-theory (cf. [10]), yielding

`P
−2ds2

M = (4πN)−1/3g−1
st ρ2

[
∆−2/3(dx2

1 + dx2
2 + dx2

3)−∆1/3dx2
0

]

+(4πN)2/3∆1/3ρ−2dρ2 + (4πN)2/3∆1/3ds2
B

+(4πN)−1/3∆1/3(g−1
st dξ2 + gstdη2),

`P
−3G4 = 2πNω ∧ ω + 2ω ∧ dη ∧ dξ

+
2
3
(4πN)−2g−3

st βd
(ρ6

∆
) ∧ dx1 ∧ dx2 ∧ dx3, (5)

where
∆ ≡ 1 + (4πN)−1g−3

st β2ρ6 ,

`P is the Planck length, x0, x1, x2, x3 are coordinates on R3,1, η and ξ are periodic coordinates
with period 2π (parameterizing T 2), ds2

B is an appropriately normalizaed metric on CP2, ω is a
harmonic 2-form whose cohomology class generates H2(CP2,Z), and G4 is the 4-form flux. We
also replaced the coordinate r with ρ ∝ 1/r, so that ρ → ∞ is the UV limit. The background (5)
becomes weakly coupled as ρ →∞.

This background has interesting properties, such as a timelike boundary corresponding to the
extreme UV similarly to AdS, an infinite redshift in frequency near the boundary, and an infinite
blueshift in wavelength. This combination of infinite frequency redshift and infinite wavelength
blueshift can be used to argue for a discrete spectrum. The argument is as follows. Consider
particle trajectories in (5) with fixed energy E and spatial momentum ~p (defined with respect
to the Killing vectors ∂/∂x0 and ∂/∂x1, . . . ∂/∂x3, respectively). Then, for timelike or lightlike
trajectories we get

ρ ≤ ρmax ≡ (4πN)1/6g
1/2
st β−1/3

(
E

|~p|
)1/3

. (6)
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To test the discreteness of the PFT spectrum, let’s compactify on a fixed T 3 and assume that
zero modes of bosonic fields are removed by appropriate twisted boundary conditions. Then |~p| is
bounded from below (by a value of the order of the inverse of the longest side of the T 3). Then (6)
implies that ρ is bounded from above by an expression that is proportional to the cube root of the
energy, so that only a finite portion of the background (5) is accessible, for any finite energy. This
suggests a discrete spectrum.

The fundamental formulation of PFT is at this point unknown. The arguments presented above,
howoever, and especially the existence of a supergravity dual with a geodesically complete metric
[as can be checked for (5) in the UV, and as is obvious for (4) in the IR] suggest that it is a decoupled
theory. The existence of simple constructions of Lorentz violating models in string theory could
provide a further incentive to look for such violations experimentally, as even a minute violation of
Lorentz invariance is experimentally testable [11].
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