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In 1934, de Haas, de Boer, and van den Berg observed that a small concentration of magnetic
impurities in a metal leads to a minimum in the temperature dependence of the resistance.
Thirty years later, this effect was explained by Jun Kondo, who used perturbation theory to
study the exchange interaction of a localized magnetic impurity with the conduction electrons
of the host metal.1 Further developments of the theory of magnetic impurities in metals led
to many powerful methods that can be applied in a variety of related problems, including
the Hartree-Fock solution to the Anderson model, many-body calculations, scaling, Bethe
ansatz solution of the spin-half s-d model, variational methods, and 1/N expansion.

In this talk, I am going to describe certain results of my recent work with E. Witten [8], where
we studied an analog of this problem in four-dimensional gauge theory. Thus, an analog of
impurity in four-dimensional gauge theory is a “surface operator,” which is supported on
a 2-dimensional surface D ⊂ M in the space-time manifold M . Surface operators have
many interesting applications to various problems in physics and mathematics, including
applications to the geometric Langlands program and knot homologies. They naturally
belong to the list of non-local operators and, therefore, can be useful for understanding
the physics of four-dimensional gauge theory (phases, non-perturbative phenomena, etc.).
In order to put this in a slightly broader perspective, it is convenient to classify non-local
operators in four-dimensional gauge theory by their codimension:

• codimension 4: the operators of codimension 4 are the usual local operators O(p)
supported at a point p ∈ M . These are most familiar operators in this list, which

1In a way, Kondo’s perturbative calculation of the resistance is the first known example of asymptotic
freedom, in which the coupling becomes non-perturbatively strong at low temperatures/low energies.
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have been extensively studied e.g. in the context of the AdS/CFT correspondence.
Typical examples of local operators can be obtained by considering gauge-invariant
combinations of the fields in the theory, e.g. O(p) = Tr(φn . . .).

• codimension 3: line operators. Important examples of such operators are Wilson and
’t Hooft operators, which are labeled, respectively, by a representation, R, of the gauge
group, G, and by a representation LR of the dual gauge group LG.

• codimension 2: surface operators. These are perhaps least studied among the operators
and defects listed here, and will be precisely our main subject.

• codimension 1: domain walls and boundaries.

While particular examples of surface operators have appeared (explicitly or implicitly) in
various contexts in physics [1, 6, 7, 14, 15, 17] and mathematics [4, 5, 11, 12] literature,
they have not been studied systematically in the context of four-dimensional gauge theory.
In particular, in order to make surface operators a standard tool in gauge theory and put
them on the same footing as the other operators listed above, one would like to address
systematically a number of basic questions:

• How can one define surface operators?

• What are they classified by?

• Are there supersymmetric surface operators?

• What are the correlation functions of surface operators?

• What is the OPE algebra of line operators in the presence of a surface operator?

• How do surface operators transform under dualities?

...

Following [8], I will describe some progress towards addressing these questions for a certain
class of surface operators in a topological gauge theory. Already with simple arguments
one can see interesting properties of surface operators and preliminary answers to these
questions. For example, according to the general formal rules of topological quantum field
theory (TQFT), correlation function of a surface operator supported on a compact surface
D embedded in a 4-manifold M is a number (namely, the partition function of the theory).
This number depends on parameters of the theory and on the surface operator, and in various
examples provides interesting invariants of embedded surfaces in 4-manifolds, cf. [11, 12].
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Figure 1: Line operators confined to a surface operator do not commute.

On the other hand, quantization of a four-dimensional topological theory on a 4-manifold
M = R × Y with a surface operator on D = R ×K gives rise to a functor that associates
to this data (namely, a 3-manifold Y , a knot/link K ⊂ Y , and parameters of the surface
operator) a vector space, the space of quantum ground states,

HY ;K,parameters (1)

Therefore, in such “static” case the correlation function of a surface operator is a vector
space, rather than a number. This simple yet important property of surface operators has
direct applications to knot homologies.

Another interesting property of surface operators which is easy to understand has to do with
the question about the OPE algebra of line operators in the presence of a surface operator.
Without a surface operator, the OPE algebra of line operators in a four-dimensional TQFT
is commutative simply because one can continuously exchange positions of line operators by
moving them around each other in four dimensional space. (This process can be regarded
as varying the metric on M , which has no effect in topological theory.) In the presence of
a surface operator, however, there can be additional line operators which are supported on
the surface operator and can not move into the rest of the 4-manifold M . Since such line
operators are confined to the surface D ⊂ M , they can not be passed through each other
without encountering a singularity. As a result, the OPE algebra of such lines operators in
general is non-commutative.
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Definition of Surface Operators

First, let us recall that a Wilson line operator labeled by a representation R of the gauge
group G is defined as

WR(K) = TrR HolK(A) = TrR

(
P exp

∮
A

)
(2)

In general, there is no analogous “electric” definition of surface operators in four-dimensional
gauge theory. However, one can define operators supported on a surface D by requiring the
gauge field A (and, possibly, other fields) to have a prescribed singularity along D:

Hol`(A) ∈ C (3)

where ` is a small loop that links surface D ⊂ M in the space-time 4-manifold M , and C is
a fixed conjugacy class in the gauge group G.

A careful definition of surface operators — which we present below for a particular example
of gauge theory — essentially gives an answer to the question about classification of surface
operators. In general, parameters of surface operators can be divided into discrete data and
continuous parameters. In a way, the former is analogous to the choice2 of a representation
that labels line operators, cf. (2), while the latter are a novel feature of surface operators.
Moreover, it turns out that understanding these continuous parameters is the key to address-
ing other important questions about the properties of surface operators. For example, the
non-commutative structure of line operators supported on a surface operator that was men-
tioned above is described by the fundamental group of the suitable (sub)space of continuous
parameters:

π1({parameters}) (4)

It turns out that many interesting four-dimensional gauge theories admit (supersymmetric)
surface operators, which have a number of nice properties. Let us focus on a particular
topological gauge theory obtained by a topological twist of maximally supersymmetric (that
is, N = 4) Yang-Mills theory in four dimensions. This theory has been extensively studied
in the context of string dualities, in particular in the AdS/CFT correspondence [13]. It
has many remarkable properties and, in fact, might even be integrable in the large N limit.
Bosonic fields in this theory include the gauge connection A and six Higgs fields, φi, i =
1, . . . , 6 which transform as 6 of the global R-symmetry group SO(6)R.

There are three topological twists of N = 4 super-Yang-Mills theory which correspond to
different homomorphisms from the SO(4) symmetry group of the four-dimensional Euclidean

2For example, as we explain below, in a theory with gauge group G = SU(N) this choice includes the
choice of a partition of N .
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space to the global R-symmetry group [16]:

κ : SO(4) → SO(6)R (5)

One of these twists — the so-called GL twist [10] — leads to a physical framework for
realizing the geometric Langlands program in gauge theory.

We will be interested in surface operators in this theory (both twisted and untwisted version)
which are half-BPS, i.e. preserve 8 real supersymmetries. Following [8], we describe a large
class of half-BPS surface operators which break the gauge group down to a subgroup L ⊂ G
(the so-called “Levi subgroup”) and which also break the global R-symmetry group,

SO(6)R → SO(4)× SO(2) (6)

by introducing a singularity for two components of the Higgs field, say ϕ = φ1 + iφ2,

ϕ =
1

2
(β + iγ)

dz

z
+ . . . (7)

Here, z = x2 + ix3 = reiθ is a local complex coordinate, normal to the surface D ⊂ M , and
the dots stand for less singular terms. In general, the definition of a surface operator also
includes a singularity for the gauge field,

A = αdθ + . . . , (8)

which corresponds to the holonomy (3). In order to obey the supersymmetry equations, the
parameters α, β, and γ must take values in (the L-invariant part of) t, the Lie algebra of
the maximal torus T of G. Moreover, gauge transformations shift values of α by elements of
the cocharacter lattice, Λcochar. Hence, α takes values in T = t/Λcochar.

In addition to the classical (or “geometric”) parameters (α, β, γ), the surface operators of this
type are also labeled by quantum parameters η, the “theta angles” of the two-dimensional
theory on D ⊂ M . It is easy to see that parameters η take values in (the LL-invariant part
of) the maximal torus LT of the Langlands/GNO dual group LG.

We can summarize all this by saying that maximally supersymmetric (N = 4) super-Yang-
Mills theory admits a large class of surface operators labeled by a choice3 of the Levi subgroup
L ⊂ G and continuous parameters4

(α, β, γ, η) ∈ (T× t× t× LT)/W (9)

invariant under the Weyl group WL of L. These surface operators naturally correspond
to the so-called Richardson conjugacy classes in the complexified gauge group GC, cf. (3)
and, in a theory with gauge group G = SU(N), cover all half-BPS surface operators which
correspond to singularities with simple poles.

3In a theory with gauge group G = SU(N) this choice is equivalent to a choice of a partition of N .
4Similar surface operators exist in N = 2 supersymmetric gauge theories; the only difference is that they

don’t have parameters β and γ.
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Duality for Surface Operators

Many supersymmetric gauge theories are believed to enjoy interesting duality symmetries.
Thus, the maximally supersymmetric Yang-Mills theory discussed above is conjectured to
enjoy electric-magnetic duality symmetry which, among other things, exchanges electric and
magnetic charges and transforms the gauge group and the coupling constant τ = θ

2π
+ 4πi

e2

as:

G → LG

τ → − 1

ngτ
(10)

Here, LG is the Langlands or GNO dual group, and ng = 1, 2, or 3 depending on G. (More
specifically, ng is the ratio of the length squared of the long and short roots of G.) How does
electric-magnetic duality act on a surface operator?

It was argued in [8], a surface operator labeled by a Levi subgroup L and continuous pa-
rameters (α, β, γ, η) under electric-magnetic duality transforms into a surface operator of the
same type, but with different parameters. Namely, the duality essentially acts trivially on
the parameters β and γ, and acts on the other parameters as:

L → LL
(α, η) → (η,−α) (11)

Surface Operators and the Geometric Langlands Program

In the gauge theory approach to the geometric Langlands program [10], surface operators
are the key ingredients that allow to incorporate ramification [8]. Understanding the ram-
ified case is important for a number of reasons. First, ramification is inescapable in the
“classical” Langlands correspondence which relates irreducible representations of the Galois
group σ : Gal(F/F ) → LG, on the one hand, and irreducible automorphic representa-
tions of G(AF ), on the other hand.5 Moreover, in the presence of ramification certain new
phenomena appear: the algebra of Hecke operators becomes non-commutative, while (for
certain types of ramification) the relation to D-modules becomes tricky, the formulation of
the geometric Langlands correspondence in terms of D-branes still remains tractable, etc.
All this motivates the study of ramification in the framework of the four-dimensional gauge
theory which, as we illustrate below, leads to important lessons for the geometric Langlands
program.

5Here, F can be a number field or a function field, F is its algebraic closure, and AF is the ring of adeles
of F .
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The physical approach to the geometric Langlands program is based on a twisted version
of the N = 4 super-Yang-Mills theory compactified on a Riemann surface C [10]. The
topological reduction of this theory leads to a N = 4 sigma-model [2, 10], whose target space
is a hyper-Kahler manifold MH , the moduli space of solutions to the Hitchin equations on
C [9]:

FA − φ ∧ φ = 0

dAφ = 0 , dA ? φ = 0 (12)

Here, A is the gauge field, a connection on G-bundle E → C, and φ is the Higgs field,
an ad(E)-valued one-form on C. After the topological reduction, the electric-magnetic du-
ality (10) of the N = 4 super-Yang-Mills theory becomes mirror symmetry which relates
topological sigma-models on dual Hitchin fibrations,

A-model on
MH(G,C, ramification)ωK

⇐⇒ B-model on
MH(LG,C,L ramification)J

where we incorporated ramification, which corresponds to introducing surface operators in
the four-dimensional gauge theory. Interpreting D-branes as objects in certain categories
identified by this duality, one recovers the basic claims of the geometric Langlands corre-
spondence with ramification. In this approach, different kinds of surface operators correspond
to different types of ramification. In particular, surface operators (6) - (8) considered above
describe the so-called tame ramification [8].

We note that, in the mathematical literature, ramification is usually described in terms of
filtered local systems (on the Galois side) or in terms of parabolic bundles (on the automor-
phic side) which involve a choice of the parabolic structure at a ramification point p, that is
a reduction of the structure group of a G-bundle E → C at a point p to a parabolic subgroup
P . In particular, the two sides appear very asymmetrically. The symmetry is restored in
the gauge theory description, where the data on both sides is encoded in the parameters of
the surface operator, namely in the choice of the Levi subgroup L and in the continuous
parameters (α, β, γ, η). Moreover, the duality transformation of these parameters (11) auto-
matically leads to the expected map between singularity of the filtered local system and the
dual choice of the parabolic structure.

The description of ramification in terms of surface operators leads to valuable lessons and
interesting new results. For example, as we explained earlier, in the presence of a surface
operator the OPE algebra of line operators becomes non-commutative. In the sigma-model
on MH , line operators correspond to functors acting on branes. According to (4), these
functors form a group which often can be identified with the fundamental group of the
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(sub)space of parameters of a surface operator. To continue with our present example, let us
consider surface operators which correspond to tame ramification and, for concreteness, focus
on the B-model in complex structure J (which describes the Galois side of the geometric
Langlands correspondence). Then, depending on whether one is interested in D-branes (as
objects the derived category of coherent sheaves on MH) or in D-brane charges (classified
by K-theory) one finds the following groups acting the on the K-theory/derived category of
the moduli space of ramified Higgs bundles6:

Claim: affine Weyl group Waff acts on K(MH)

affine Hecke algebra Haff acts on KC∗(MH)

affine braid group Baff acts on Db(MH)

Hence, this result can be regarded as a categorification of the affine Hecke algebra, which in
the local version of MH was also obtained by Bezrukavnikov [3] using a “noncommutative

counterpart” of the Springer resolution Ñ → N . The action of Waff and Baff in the first
and the last part of this claim can be understood as the monodromy action in the space of
parameters of the surface operator [8].

For example, let us illustrate how this group action arises at the level of D-brane charges,
which are classified by K(MH). The space of D-brane charges K(MH) varies as the fiber
of a flat bundle over the space of parameters away from the points where MH develops
singularities. Since for the purposes of this question we are interested only in the geometry
of MH , we can ignore the “quantum” parameter η. Hence, the relevant parameters are
(α, β, γ), which take values in the space, cf. (9):

(α, β, γ) ∈ (t× t× t)/Waff (13)

Moreover, MH becomes singular precisely for those values of (α, β, γ) which are fixed by
some element of Waff . The set of such points is at least of codimension three in t3 (since it
takes three separate conditions to be satisfied for (α, β, γ) to be fixed by some element of
Waff). Therefore, the space of regular values of (α, β, γ) ∈ t3 where MH is non-singular is
connected and simply-connected, and since Waff acts freely on this space, the fundamental
group of the quotient is

π1({(α, β, γ)}reg) = Waff (14)

This is the group that acts on D-brane charges, that is on K(MH). In a similar way, one
can deduce the action of the affine braid group Baff on Db(MH) as the fundamental group of
the Kähler moduli space. Indeed, for the B-model in complex structure J the complexified

6For simplicity, here we consider only one ramification point p ∈ C. For the case of ramification at several
points, one finds several group actions, one for each ramification point.
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Kähler parameters are β + iη, and from (9) one finds [8]:

π1({(β, η)}reg) = Baff (15)
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