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Introduction

In this talk we give a short overview of attempts to construct the Standard Model, or more precisely
the MSSM within string theory. As a general disclaimer, the list of references provided is by no
means complete and certainly does not re�ect all approaches which have been taken. References
to earlier important papers on similar material can be found in the included references.

Heterotic Models

Some reviews on model building in heterotic M-theory may be found in [1, 2]. We �rst recall
that the strongly coupled limit of the heterotic E8 � E8 theory is given by heterotic M-theory.
There are two �end of the world� ten dimensional E8 branes separated by an interval of length
R11. In order to construct semi-realistic models in four dimensions, we compactify six of the
remaining dimensions on a Calabi-Yau threefold, X. Even though uni�cation is expected to take
place in a higher dimensional sense, the main idea is to organize all of the matter content into
GUT multiplets of SU(5), Spin(10) or E6. We turn on a suitable gauge �eld strength in an
SU(n)� discrete subgroup of E8 to break down to the gauge group of the Standard Model (Gstd),
with some additional possible U(1) factors, and then further isolate the pieces which we would
like to identify with the MSSM spectrum. In the above, the �discrete�piece of the �eld strength
refers to a choice of discrete Wilson line when �1(X) 6= 0. To achieve this breaking pattern we
must �nd an appropriate holomorphic gauge bundle V1 on the visible brane. Letting V2 denote the
gauge bundle on the hidden brane, at the level of cohomology, upon integrating over the interval
the heterotic anomaly amounts to the condition:

c2 (V1) + c2(V2) +
X
i

[Wi] = c2 (TX) .
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In the above equation, the [Wi]�s denote the contribution due to M5-branes wrapping curves in X.
The massless spectrum of the theory now follows by analyzing the kernel of the six dimensional
Dirac operator. This procedure is summarized in [3]. The number of generations minus the
number of anti-generations is c3 (V1) =2. An important model building constraint on V1 is that we
must require:

3 = Ngen =

����12c3 (V1)
���� .

Note that the index can only count the number of generations minus the number of anti-generations.
This will generically lead to vector-like matter, so that we must either explicitly check that such
pairs are lifted from the low energy spectrum, or construct V1 so that no anti-generations are
present.

In the limit where R11 tends to zero size, we recover the weakly coupled description. In this
limit, it is most natural to consider the so-called standard embedding where the spin connection is
embedded inside the gauge connection of the visible E8 factor. Further details of this approach
may be found in [4, 3]. In this case, it is natural to organize the matter content according to E6
multiplets. So far, this approach has not yielded a spectrum identical with the MSSM spectrum.
A further di¢ culty with this approach is that typically the perturbative limit makes a prediction
for the value of Newton�s constant GN which is too large by a factor of about 400. This and other
issues are discussed in greater detail in [5].

Returning to heterotic M-theory, we note that the presence of M5-branes allows us to relax the
cohomological constraint on V1. Making use of this fact, it has recently been shown in [6, 7] that
besides the presence of moduli, one can achieve the exact spectrum of the MSSM. In what we shall
call the SU(5) model [6], the structure group of V1 is SU(5) so that the breaking pattern is E8 !
SU(5)! Gstd. In the Spin(10) model [7], the structure group is SU(4) and the breaking pattern is
E8 ! Spin(10)! Gstd �U(1)B�L. In the SU(5) model, the con�guration is supersymmetric and
satis�es the heterotic anomaly constraint. We note, however, that a generic point in vector bundle
moduli space supports no Higgs up-Higgs down pairs. A single pair exists in a codimension two
subspace of the vector bundle moduli space. In this model, right handed neutrinos are associated
with the fermionic partners of the moduli. In the Spin(10) model, there is an additional gauged
U(1)B�L, and the right handed neutrinos �t into the 16 representation of Spin(10). We note that
whereas stability has been e stablished in the SU(5) models, at present this issue is less clear in
the Spin(10) model.

Type II Models with D-branes

In type II constructions with D-branes, the essential point is that the Standard Model can be
described by a quiver gauge theory. Although we shall state the rules for building such quivers
in type IIA language, all of these rules can be re-formulated purely in type IIB terms. To this
end, we consider type IIA compacti�ed on an orientifold of a Calabi-Yau threefold. D6-branes
wrapping special Lagrangian submanifolds of the Calabi-Yau threefold will give rise to U(n) type
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gauge theories. Further, the presence of O-planes allows more general SO(n) and Sp(n) type
gauge groups when a D6-brane coincides with an O-plane. The chiral matter of the associated
gauge theory is given by the intersection pairing between the various branes. Now let �a denote
a 3-cycle and �0a its image under O-plane re�ection, with similar notation for the 3-cycles �b and
�0b. In our sign conventions, a stack of Na D6-branes wrapping �a and Nb D6-branes wrapping
�b will produce chiral matter in the

�
Na; Nb

�
representation when �a \ �b is positive. We �nd

chiral matter in the (Na; Nb) representation when �0a \ �b is positive, and matter in the two index
symmetric or anti-symmetric representation of U(Na) when the quantity (�a \ �0a � �O6 \ �a) =2
is non-zero. In this formula, the + sign (resp. � sign) correlates with the anti-symmetric (resp.
symmetric) representation. Detailed reviews on intersecting brane models for branes wrapping
orbifolds of T 6 which cover many further aspects of such setups may be found in [8, 9, 10].

The most compact embedding of the standard model into a quiver gauge theory consistent with
the abstract rules given above is given by the so-called �MQSM�constructed in [11]. We should
caution that although this quiver is consistent with the above rules, it has not been realized as a
D-brane con�guration. This gauge theory is given by a three node quiver with gauge groups U(3)�
Sp(1)�U(1). Whereas one linear combination of U(1) generators corresponds to hypercharge, the
other is anomalous and is cancelled by a generalized Green-Schwarz mechanism. This is a general
feature of such models. Indeed, the Stueckelberg mechanism will also cause some non-anomalous
U(1) gauge bosons to develop a mass due to the coupling on the d dimensional worldvolume:Z

Cd�2 ^ F

where F denotes the abelian �eld strength of the brane and Cd�2 denotes the d� 2 RR form. One
can then expect a global U(1) to persist in the theory which can be broken by gauge theory and
stringy instanton e¤ects.

Quiver gauge theories also naturally arise from D-brane probes of Calabi-Yau singularities. Recent
constructions in type IIB string theory have shown that D3-brane probes of appropriate singularities
can reproduce many of the expected features of MSSM-like quivers [12, 13, 14]. Locally, the
singularity corresponds to a collapsed holomorphic surface inside of a non-compact Calabi-Yau
threefold. Upon partially resolving this singularity, the probe brane splits up into a collection
of D7-branes wrapping 4-cycles, D5-branes wrapping 2-cycles and D3-branes wrapping 0-cycles.
These �fractional branes� then base the associated quiver gauge theory. An important feature
of these models is that there exists a limit where the closed string modes decouple from the open
string modes.
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