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1 Introduction

The study of supersymmetry breaking configurations in string theory has been a topic of significant
interest during the past year. Many of these constructions have focused on stringy realizations of
ISS type vacua in supersymmetric gauge theories. Another interesting class of examples has recently
emerged, though, which admit no effective gauge theory description and therefore are, in a sense,
inherently stringy[1, 2]1 . These involve wrapping D5 and D5 branes on vanishing 2-cycles of local
CY 3-folds in type IIB. If the vanishing cycles wrapped by branes and antibranes are homologous
but grow to some finite nonzero size in between, classical brane/antibrane annihilation is prevented
by a potential barrier and the resulting configurations are metastable. On the other hand, if
the vanishing cycles are nonhomologous, one may be able to construct metastable or even stable
nonsupersymmetric configurations.

What makes these noncompact type IIB constructions particularly interesting is that one has a
great deal of computational control and can reliably study the scalar potential, and hence the
vacua and phase structure, of the system. The reason for this is twofold. First, it has been
conjectured that such brane/antibrane systems continue to exhibit the large N duality of [5, 6, 7],
permitting one to describe them by deformed CY with flux. The only modification to the usual
story in this nonsupersymmetric setting is the sign of the flux associated to the antibranes after
geometric transition. The second crucial observation of [1] is that the N = 2 supersymmetry of
type IIB on these noncompact CY 3-folds is only spontaneously broken by the fluxes, whose effect

1It should be noted, however, that some more recent work in this area focuses on brane/antibrane setups which
do admit an effective gauge theory description in the IR [3, 4]
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is simply to add electric and magnetic FI terms to the N = 2 abelian gauge theory that describes
the IR physics. As such, the kinetic terms continue to be specified by special geometry and hence
not only the superpotential, but in fact the full scalar potential can be determined reliably2.

In the supersymmetric setting, the standard geometric transition story in type IIB has a well-
understood T -dual counterpart in type IIA. The classical IIB setups with D5 branes wrapping
vanishing cycles on local Calabi-Yau map to NS5/D4 brane configurations [9, 10, 11]. In type IIA,
the tool that one utilizes to study the quantum system is M -theory, in terms of which our classical
setup is described by nothing more than a curved M5 brane [12, 13]. This intuition instructs us
to replace the NS5/D4 setup by a curved NS5 brane with flux in a manner quite analagous to
the replacement of the classical configuration of D5’s at CY singularities in IIB by a deformed CY
geometry with flux. In the supersymmetric case, it is well-established that the vacuum configuration
of the curved NS5 brane in type IIA is exactly T -dual to the deformed geometry on the type IIB
side after geometric transition with moduli sitting at the supersymmetric vacuum [14, 15].

In this note, we shall describe how one can expand this story to the nonsupersymmetric setting, a
task which is of interest for a variety of reasons. First, it will provide additional evidence for the
two main conjectures of [1], namely the large N duality conjecture for brane/antibrane systems
and the spontaneous breaking of N = 2 SUSY by fluxes and anti-fluxes on local CY 3. Second,
M -theory allows us to go beyond the gs � 1 regime where one can reliably study the type IIB
setup and peer into the world of strong string coupling. There, we will find new nonsupersymmetric
features which do not have well-understood analogs in type IIB4

Before we study supersymmetry breaking configurations, though, we shall begin in section 2 by
reviewing the supersymmetric story of the geometric transition in type IIB and its type IIA/M
counterpart. Then, in section 3, we shall turn to the nonsupersymmetric story, describing non-
holomorphic minimal area M5 curves and their properties. The general story we shall be telling
here was first worked out in one example of a brane/antibrane system in [19]. Throughout this
note, however, we shall make use of a simpler example, a study of which on the IIB side recently
appeared in [3]. The type IIA/M description of this system is still part of work in progress and will
appear soon [16].

2Note that this residual N = 2 structure is apparently more strongly broken and the system altered by warping
effects after one couples to gravity [8].

3As far as we understand, the conjecture related to spontaneous breaking of SUSY is made at string tree level
only. Indeed, we will find that, at least on the IIA side, it no longer holds in certain regimes at large gs.

4Strictly speaking, these features are not directly related to anything in type IIB because the IIA and IIB descrip-
tions are valid in different ranges of parameter space, depending on the size of the circle on which T -duality is applied.
The new features in IIA are present when SUSY is not spontaneously broken so there is no structure to guarantee
that they carry over to the IIB side. One might hope to find something qualitatively similar in IIB, though.
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(a) Depiction of the singular CY (4) and its smooth defor-
mation (6) as an A2 fibration over the v-plane. The marked
points indicate singular or smooth degenerations of one of
the two S2’s in the A2 fiber. The A and B cycles of the
deformed CY are also labeled.
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(b) Depiction of the singular CY (4) as
a C∗ fibration over C2. The solid lines
denote smooth degenerations of the S1 ⊂
C∗. The dotted are intervals over which
one can fiber this S1 to obtain a nontrivial
S2.

Figure 1: Two pictures of the CY geometry (4)

2 The Supersymmetric Story

2.1 The IIB Side

We start by considering type IIB on a simple class of local CY obtained by fibering deformed ALE
singularities over the complex plane. To build a simple example of such a CY, consider for starters
an A2 singularity

xy + w3 = 0 (1)

We can view this as a C∗ fibration over the w plane with a singular point at the origin. It is well-
known that one can smooth out this singularity by turning on a pair of holomorphic deformations

xy + (w + t1)(w + t2)(w − t1 − t2) = 0 (2)

which replace the multiple degeneration point of the C∗ by three smooth degeneration points By
fibering the S1 ⊂ C∗ over an interval connecting any pair of them, we find that holomorphic S2’s
have grown in place of the singularity. There are in fact two homologously distinct such S2’s in the
case of A2.

We now build our local CY by fibering this deformed A2 geometry over another copy of C,
parametrized by v. This is accomplished by replacing the ti by holomorphic functions ti(v). For
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simplicity, we focus on the specific example5

xy + w
(
w − v − m

2

)(
w − v +

m

2

)
= 0 (3)

which can be put into an even simpler form by taking v → w − v

xy + w

(
v2 − m2

4

)
= 0 (4)

Two ways of visualizing this geometry will be useful for us. First, we have the usual picture,
depicted in figure 1(a), of an A2 fibration with one of the S2’s at the tip degenerating at v = m

2 and
the other degenerating at v = −m

2 . Alternatively, we can think of this geometry as a C∗ fibration
over the C2 spanned by w and v in which the fiber degenerates along the curves

w = 0, v =
m

2
, v = −m

2
(5)

As indicated in figure 1(b), the S2’s can be seen in this setup by fibering the C∗ over any interval
connecting a pair of these curves. Where two curves intersect, the corresponding S2 degenerates.
Note that our simple example is quite nongeneric because there is an S2 in the geometry which
never degenerates.

The local CY just constructed has two singular points but we can easily smooth them out by a
suitable complex deformation

xy + w

(
v2 − m2

4

)
= a

(
v − m

2

)
+ b

(
v +

m

2

)
(6)

As we see in figure 1(a), this deformation replaces the singular degeneration point of each S2

with a pair of smooth degenerations. Fibering either S2 over an interval connecting its smooth
degeneration points yields an S3 which has grown in place of the singularity.

Now that we have reviewed the relevant geometries, let us turn to the physics. We start with the
singular geometry (4) and wrap N1 D5 branes on the degenerate S2 at v = −m

2 and N2 D5’s on
the degenerate S2 at v = m

2 . We also turn on nontrivial BNS and C0 along these two cycles. This
type of setup engineers N = 1 U(N1) × U(N2) gauge theory with masses for the adjoint chiral
superfields. The NS and RR 2-forms determine the bare gauge couplings and θ-angles, respectively.

To study this system at the quantum level, we perform a geometric transition whereby the singular
geometry (4) with branes is replaced by the nonsingular geometry (6) with fluxes. The complex
deformations of (6) are dynamical moduli whose values are fixed by the Gukov-Vafa-Witten super-
potential, which is generated by the fluxes [17]

WGV W =
∫

H ∧ Ω (7)

5To bring the CY into this form we have also shifted w by a constant.
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Here, Ω is the holomorphic 3-form and H the 3-form flux. The periods of H along the A and B
cycles in figure 1(a) are given by

1
2πi

∮
Aj

H = Nj
1

2πi

∮
Bj

H = −αj (8)

while, as usual, the A-periods of Ω parametrize the space of complex structure moduli

Sj =
1

2πi

∮
Aj

Ω (9)

It is often convenient to integrate H and Ω over the holomorphic S2’s in the A2 fibers. In this case,
each reduces to a 1-form defined on the Riemann surface

w

(
v2 − m2

4

)
= a

(
v − m

2

)
+ b

(
v +

m

2

)
= 0 (10)

More specifically, Ω reduces to ∫
fiber

Ω ≡ ω = w dv (11)

while H reduces to a 1-form h with periods given by the fluxes

1
2πi

∮
Aj

h = Nj
1

2πi

∮
Bj

h = −αj (12)

Supersymmetric vacua of this system now correspond to a Riemann surface whose period matrix
τ̂ij satisfies the equation of motion that follows from (7)

αi + τ̂ijNj = 0 (13)

The present example is particularly easy to solve because the holomorphic prepotential is known
exactly [3, 16]

2πiF(S) =
1
2
S2

1

(
ln
(

S1

mΛ2
0

)
− 3

2

)
+

1
2
S2

2

(
ln
(

S2

mΛ2
0

)
− 3

2

)
− S1S2 ln

(
m

Λ0

)
(14)

One immediately finds that the supersymmetric vacua occur for

SN1
1 = Λ2N1−N2

0 mN1+N2e−2πiα1 SN2
2 = Λ2N2−N1

0 mN2+N1e−2πiα2 (15)

2.2 The IIA Side

To study this system from the IIA point of view, we apply T -duality along the S1 contained in
the C∗ fiber. The result of this is to replace the local CY geometry with a configuration of NS5
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(a) NS5/D4 configuration related to D5’s at singular-
ities of the local CY (4). The marked point on the
λ-plane (±1 and ∞) to which each NS5 corresponds
is also indicated.

λ

A1A 2

B1B2

1−1

(b) λ-plane used to parametrize the M -
theory lift of the classical NS5/D4 config-
uration in figure 2(a). The A and B cycles
T -dual to those of figure 1(a) are also in-
dicated.

Figure 2: NS5/D4 setup in type IIA and the λ-plane used to parametrize its M -theory lift

branes in flat space. More specifically, one obtains three NS5 branes, each extended along the 0123
directions and one of the three degeneration curves of figure 1(b). Moreover, the three NS5’s are
further separated along the dual circle direction, which we denote by x6, by an amount determined
by
∫

B along the two cycles connecting these curves. Finally, the D5 branes wrapping vanishing
cycles dualize into D4 branes connecting adjacent NS5’s. We study the limit in which the x6

direction is essentially decompactified so that the resulting configuration is as in figure 2(a) and
consists of three parallel NS5 branes with stacks of N1 and N2 D4 branes in between.

To study this system at the quantum level, we recall that NS5’s and D4’s are both different
manifestations of a single object, namely the M5 brane. We therefore look for a smooth M5 brane
extended along the 0123 directions and wrapping a minimal area Riemann surface in the remaining
directions. We will parametrize this Riemann surface by the coordinates w and v as well as the
holomorphic combination of the dual circle direction, x6, and the M -circle, x10

s = x6 + ix10 (16)

In the literature one typically gives an explicit representation of this embedding by specifying w(v)
and s(v) but, because this is difficult to do in the nonsupersymmetric setting, we shall focus instead
on a parametric description. For this, we note that the configuration at hand will lift to a genus 0
Riemann surface with three punctures, corresponding to the points at infinity on the three NS5’s6.

6We must have punctures because flux is allowed to come in from infinity along the NS5’s.
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We can therefore parametrize this surface by a single copy of C with three marked points, which
can be taken to lie at −1, 1, and ∞.

To find the embedding relevant for the specific IIA configuration at hand, we must specify appro-
priate boundary conditions. First, along w and v we require that7

w(−1) =
m

2
w(∞) = 0 w(1) = −m

2
(17)

and
v(−1) =∞ v(∞) = constant v(1) =∞ (18)

Now we must also specify the boundary conditions along s, which characterize the separation
between NS5’s and windings that originate from the D4’s. These are most easily phrased in terms
of periods of the 1-form ds about the A and B cycles depicted in figure 2(b)

1
2πi

∮
Aj

ds = Nj
1

2πi

∮
Bj

ds = −αj (19)

A holomorphic embedding satisfying these conditions is easy to write down

s(λ) = N1 ln(λ− 1)−N2 ln(λ + 1)

w(λ) = − 2
m

(
A

λ− 1
− B

λ + 1

)
v(λ) = −mλ

2

(20)

where8

AN1 = mN1+N2Λ2N1−N2
0 e−2πiα1 BN2 = mN1+N2Λ2N2−N1

0 e−2πiα2 (21)

From this parametric description, we can easily obtain the explicit one

0 = w

(
v2 − m2

4

)
−A

(
v − m

2

)
+ B

(
v +

m

2

)
s = ln

(
mN2−N1

(
v + m

2

)N1(
v − m

2

)N2

)
+ constant

(22)

which agrees with the M -theory lift for this setup originally found by Schmaltz and Sundrum [18].
If we interpret this M5 in IIA as a curved NS5 with flux, it is related by T -duality to a deformed
CY with flux of precisely the form (6). Note, however, that the combination of holomorphy and our

7We also require that the embedding is locally 1-1 near the points where w and/or v diverge, which means that
these correspond to single poles of the complex parameter λ.

8When imposing the B-period constraints on ds, which fix A and B in terms of the boundary data αj , we must
regularize, just as in the IIB case, by introducing a cutoff. In the following, we cutoff integrals over v at Λ0 and
integrals over w at mΛ0. This is consistent with the fact that, before we did the rotation to the form (4), w ∼ ±mv
at infinity.
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boundary conditions have completely fixed the moduli A and B of the resulting Riemann surface.
To compare with the IIB side, we simply evaluate

S1 =
∮

A1

w dv = A S2 =
∮

A2

w dv = B (23)

to see that A and B are nothing more than the moduli Si. From (21), we finally see that the
M5 curve is T -dual to the IIB deformed geometry with flux after geometric transition with moduli
sitting precisely in the supersymmetric vacuum.

2.3 Some Further Remarks

Because the system considered thus far was supersymmetric, we were not particularly careful about
enumerating when various analyses and interpretations were truly reliable. It is important to look
at this issue a bit more carefully, though, if one wants to move to the nonsupersymmetric setting.

First of all, it must be noted that the IIB and IIA analyses presented here are never simultaneously
valid. The reason for this is that on both the IIB and IIA sides, we had to assume the S1 that
gets T -dualized is large in string units. Consequently, each description is really probing a different
regime of parameter space. For the SUSY configurations studied here, it is not surprising that the
two sides nevertheless agree because they describe BPS vacua but, in more general settings, there
is no a priori reason to expect any resemblance at all between the IIB and IIA descriptions. In a
regime where N = 2 SUSY is truly spontaneously broken, though, this residual structure provides
enough ”protection” to expect agreement. In this manner, a IIA description which is equivalent to
the IIB one would provide some evidence for the existence of this extra structure and might provide
a clue as to what parameter(s) controls it.

Secondly, we must be careful to enumerate precisely when minimal area M5 curves provide a reliable
description of the vacuum and, in addition, when an interpretation at weak coupling in terms of
a curved NS5 brane with flux can be trusted. Said more simply, we must ask when the probe
approximation is truly reliable. In general, one requires that the curvatures and flux density are
both small in the appropriate units, namely string units in IIA and 11-dimensional Planck units
in M -theory. It is easy to demonstrate [19] that there are actually two quite separate regimes in
which both of these conditions can be met, one at weak coupling gs � 1 where we have a IIA
description, and one at strong coupling gs � 1 where we have an M -theory description. If we tune
parameters to lie within one of these two regimes, we can use the probe approximation, and hence
our minimal area curves, even to describe vacuum configurations that are not supersymmetric.
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3 The Nonsupersymmetric Story

3.1 IIB Side

We now return to the local CY (4) and consider the possibility of replacing one set of D5’s with D5’s.
An example of this sort was studied recently in [3]. According to the large N duality conjecture
of [1], we can study this system using the same deformed CY (6) with flux provided we associate
negative RR fluxes with the presence of antibranes before the geometric transition.

Once we arrive in the deformed CY with flux picture, we can use the fact that the fluxes spon-
tanneously break N = 2 SUSY to study the vacuum structure. In particular, we still have the su-
perpotential (7) and the Kahler potential is determined by special geometry according to K ∼ =τ̂ .
Our interest now, however, is in nonsupersymmetric solutions so instead of studying the condition
(13) we look instead for minima of the full scalar potential

V = (αi + N `τ̂`i)
(
=τ−1

)ij (αj + Nmτ̂mj) (24)

Using the prepotential (14), it is easy to see that there are in fact four critical points of this potential
given by

SN1
1 = Λ2N1−N2

0 mN1+N2e−2πiα1 SN2
2 = Λ2N2−N1

0 mN2+N1e−2πiα2 (25)

SN1
1 = Λ2N1−N2

0 mN1+N2e−2πiᾱ1 SN2
2 = Λ2N2−N1

0 mN2+N1e−2πiᾱ2 (26)

SN1
1 =

(
Λ2N1

0 Λ̄N2
0 mN1

m̄N2

)
e−2πiα1 SN2

2 =

(
Λ2N2

0 Λ̄N1
0 mN2

m̄N1

)
e−2πiᾱ2 (27)

SN1
1 =

(
Λ2N1

0 Λ̄N2
0 mN1

m̄N2

)
e−2πiᾱ1 SN2

2 =

(
Λ2N2

0 Λ̄N1
0 mN2

m̄N1

)
e−2πiα2 (28)

For each of these critical points, however, we must determine when it is a minimum and when it
lies within the physical regime =τ > 0. The importance of the second point cannot be understated
as even the supersymmetric solutions can correspond to Riemann surfaces that become degenerate
if the holomorphic volumes of the blown up three-cycles become sufficiently large compared to the
cutoff scale, Λ0. It is easy to demonstrate that, in fact, no two critical points can ever simultaneously
exist in the physical regime and, moreover, that any critical point which lies within the physical
regime is a minimum of the potential.

For simplicity, we now restrict our attention to the case =αj < 0. In the supersymmetric scenario
where N1, N2 > 0 it is easy to see that only the supersymmetric solution (25), which also satisfies
(13), lies within the physical regime. Alternatively, if we take N1, N2 < 0 then the relevant solution
becomes (26), which satisfies

αj + τ̂ jkN
k = 0 (29)
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and preserves the opposite half of the original N = 2 supersymmetries as (25). This describes the
vacuum configuration obtained by starting with two stacks of D5’s before the geometric transition.

If we consider N2 > 0 and N1 < 0, though, neither (25) nor (26) lies within the physical regime9.
Instead, the only minimum is a nonsupersymmetric one (28), which describes the vacuum configura-
tion associated to N2 D5’s and N1 D5’s. Similarly, the solution (27) yields the nonsupersymmetric
vacuum in the case N2 < 0 and N1 > 0 and describes the vacuum configuration associated to N1

D5’s and N2 D5’s.

3.2 The IIA Side

We now turn to the type IIA/M description of the nonsupersymmetric configurations just discussed.
For definiteness, let us take N1 > 0 and N2 < 0. We also take αj purely imaginary and m,Λ0 purely
real to keep things simple. The setup is as in figure 2(a) with the stack of N2 D4’s replaced by a stack
of N2 D4’s. The holomorphic embedding (20) with N2 taken to be negative has the right properties
to describe a lift of this configuration but this simply corresponds to the supersymmetric solution
(25) on the IIB side, which lies outside of the physical regime =τ > 0. From the IIA/M point of
view, this ”breakdown” arises because the tubes into which the D4’s and D4’s blow up become
large compared to the cutoff scale Λ0

10. What we would like to do here is find the configuration
corresponding to the solution (27). This will take the form of a nonholomorphic minimal area
embedding of the M5 into flat space.

The equations of motion governing such a minimal area embedding are familiar from bosonic string
theory. As we recall from that context, the embedding coordinates must be harmonic

∂∂̄s(λ, λ̄) = ∂∂̄w(λ, λ̄) = ∂∂̄v(λ, λ̄) = 0 (30)

and satisfy the ”Virasoro” constraint11

g2
s∂s∂s̄ + ∂w∂w̄ + ∂v∂v̄ = 0 (31)

The search for nonholomorphic solutions to this system may seem hopeless but note that harmonic
s, v, w can be written as sums of holomorphic and antiholomorphic functions

s(λ, λ̄) = sH(λ) + sA(λ̄) w(λ, λ̄) = wH(λ) + wA(λ̄) v(λ, λ̄) = vH(λ) + vA(λ̄) (32)
9For this, we use the fact that one naturally chooses the mass m to be smaller than the cutoff scale, m < Λ0

10It is not clear that this ”breakdown” is a disaster in this IIA/M description. In type IIB, it causes the potential
to become negative but the analagous quantity on the IIA/M side, namely the area of the curve, remains a manifestly
positive definite quantity. What does break down when =τ ceases to be positive definite is the ability of the IIB
potential to approximate the area of the M5 curve at weak coupling.

11Because we defined s without a factor of R10 = gs, an explicit factor of g2
s appears here from the target space

metric.
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in terms of which (31) becomes

g2
s∂sH(λ)∂sA(λ) + ∂wH(λ)∂wA(λ) + ∂vH(λ)∂vA(λ) (33)

Thus, even though (31) is a nonlinear condition, it is nevertheless a holomorphic one, significantly
simplifying the task of finding solutions. In the case at hand, let us begin by looking for a nonholo-
morphic minimal area embedding satisfying the A period constraints

1
2πi

∮
Aj

ds = Nj (34)

and having first order poles in w (v) at λ = ±1 (λ = ∞). Such a solution is not difficult to find
and takes the form

s(λ, λ̄) = gs

[
N1

2
ln
(

λ− 1
λ̄− 1

)
− N2

2
ln
(

λ + 1
λ̄ + 1

)]
+ gsN1 cos θ1 ln |λ− 1|+ gsN2 cos θ2 ln |λ + 1|

w(λ, λ̄) = − 2
m

(
A

λ− 1
− B

λ + 1

)
v(λ, λ̄) = −Mλ + gsN1 sin θ1 ln |λ− 1| − gsN2 sin θ2 ln |λ + 1|

(35)

where

0 = N1 sin θ1 −N2 sin θ2

M =
gsN2 [1 + cos(θ1 + θ2)]

2 sin θ1

(36)

and θ1 is a real parameter. This is actually a three-parameter family of solutions which depends on
our choices of A, B, and θ1. To find the solution which yields a lift of the IIA configuration 2(a),
we must further impose the B-period constraints

1
2πi

∮
Bj

= −αj (37)

and the condition ∮
B1+B2

dv = −m (38)

which fixes the relative separation between the left- and right-most NS5’s of figure 2(a) along v.
These conditions can be studied in detail and indeed have some interesting structure12 but for now
let us focus on general features of the solution which do not require this level of scrutiny.

12By analogy with the brane/antibrane setup of [1, 2], there is a regime where we find two distinct solutions, of
which only one is stable, and there is a regime where we find no solutions at all.
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Figure 3: Tilting of D4 and D4 stacks which gives rise to nonholomorphic ”dimpling” of the NS5’s
along v

3.2.1 Understanding the Nonholomorphic Features

The first thing to note is that the embedding along w and v is now manifestly nonholomorphic.
Consequently, when interpreted as describing the worldvolume of a curved NS5 brane, the con-
figuration at hand does not appear to be T -dual to anything resembling a deformed CY. This is
in stark contrast to what we might have expected from large N duality on the type IIB side and
seems to indicate that the fragile relationship between the IIB and IIA stories is falling apart when
supersymmetry is broken.

We might still hope, though, that these nonholomorphic features are negligible in some parameter
regime. To see if this is true, let us try to understand their physical origin. From the form of (35),
it appears that the logarithmic bending along x6, which is a quantum effect that arises from D4’s
pulling on and ”dimpling” the NS5’s [12, 13], has been rotated into the <v direction by an angle
θ1 near one NS5 and by an angle θ2 near the other.

This rotation has a simple physical origin, though, in the repulsion between D4’s and D4’s ending
on a common NS5 from opposite directions [20, 21]. This causes the D4’s and D4’s to rotate slightly
which, in turn, means that they dimple the NS5’s along a direction that is not exactly parallel to
x6. As a result, logarithmic bending leaks into the v-direction and the w(v) embedding becomes
manifestly nonholomorphic. This situation is depicted in figure 3.

To see what parameter controls the rotation of the D4’s and D4’s, let us follow a physical argument
of the sort described in [21]. Momentarily setting N1 = N2 for simplicity, we note that the branes
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and antibranes behave like oppositely charged particles on the one transverse direction of the NS5
on which they both end. Denoting the distance that either the branes or antibranes move from the
initial position (where they were separated by m) by x, the corresponding potential is

Vattractive ∼ N2 ln
(

m− 2x

m

)
(39)

On the other hand, in order to move closer to one another, the D4’s and D4’s must stretch, paying
an energy cost in tension. The corresponding contribution to the potential is

Vtension =
2N

gs

√
∆s2 + x2 (40)

At small x, the full potential Vattractive + Vtension is minimized for a rotation angle

θ ∼ tan θ =
x

∆s
∼ gsN

m
+O

(
[gsN/m]2

)
(41)

We can see this relation arise directly from our solution (35) as well, though it is not obvious as
written because one must first impose the constraints (37) and (38) to derive it. Nevertheless, when
gsNj/m is small the rotation angle θ1 scales like 13.

sin θ1 ≈
2gsN2

m
+O

([
gsNj

m

]3
)

(42)

and our full solution (35) reduces to

s(λ, λ̄) = gs

[
N1

2
ln
(

λ− 1
λ̄− 1

)
− N2

2
ln
(

λ + 1
λ̄ + 1

)]
+ gsN1 ln |λ− 1|+ gsN2 ln |λ + 1|

w(λ) = − 2
m

(
A

λ− 1
+

B

λ + 1

)
v(λ) = −mλ

2

(43)

When interpreted as a curved NS5 with flux in type IIA, this solution is T -dual to the deformed
CY (6) with flux. Moreover, if we follow the values of A and B forced on us by the constraints (37)
and (38) in this limit, we find

AN1 = Λ2N1+N2
0 mN1−N2e−2πiα1 BN2 = Λ2N2+N1

0 mN2−N1e2πiα2 (44)

Recalling that the moduli of the Riemann surface w(v) are given by

S1 = A S2 = B (45)
13Actually, there are two branches of solution for θj at small gs. We focus here on the branch in which θj is

proportional to gs at small gs as it seems to be the only stable one.
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we see that our solution is exactly T -dual to the nonsupersymmetric minimum (27) 14.

What we have seen, then, is that when the parameters gsNj/m are small, the IIA/M description
exhibits complete agreement with the type IIB results obtained using large N duality and the
assumption of spontaneous breaking of N = 2 SUSY.

3.2.2 Comments on more general setups

We can understand the importance of the parameter gsNj/m for controlling the generation of
nonholomorphic terms in w(v) from a more general perspective by looking directly at the constraint
(33). In order for the curve to take the approximate form of a holomorphic embedding w(v) with
harmonic s, the characteristic sizes of ∂w and ∂v must be small compared to that of ∂s, which is
simply gsNj . In general, ∂w and ∂v will scale like the larger of Sj ,m, which control holomorphic
volumes in the curve, but in our example the actual contributions of w and v to (33) instead always
scale like m. This is due to the extreme simplicity of the example under study and we expect that
in general one needs all of gsN/Sj and gsN/m to be small in order for antiholomorphic terms in w
and v to be negligible.

It is also important to note that, in order for the probe approximation in IIA to be reliable, one
needs all of gsN/Sj and gsN/m to be small [19]. This means that, whenever the IIA description is
valid, the resulting configuration is expected to take a form that is T -dual to a deformed CY with
flux. Moreover, we can argue that, whenever the underlying Riemann surface is nondegenerate15,
the moduli resulting from the IIA/M analysis will always sit at a minimum of the IIB potential.
To see this, note that when ∂s� ∂w, ∂v the Nambu-Goto action becomes approximately

SNG =
1
gs

∫ √
g(v, w, s) =

1
gs

∫ √
g̃(v, w) +

∫
|ds|2 + . . . (46)

where g̃ is the induced metric associated to the v and w coordinates of the embedding only. The
g̃ term implies that w(v) must yield a minimal area embedding on its own which is necessarily
holomorphic if we impose holomorphic boundary conditions along those directions. The complex
structure moduli of w(v) then yield flat directions of the g̃ term.

Turning now to the second term of (46), we find that ds must define a harmonic 1-form on the
Riemann surface given by w(v). The boundary conditions that we impose along s amount to
fixing both the A- and B-periods of this harmonic 1-form and hence s is specified uniquely for
a given choice of complex structure moduli. Because the complex structure moduli are not flat
directions of

∫
|ds|2, though, we must do a further minimization. A careful analysis reveals that,

14Recall that, for simplicity, we took αj imaginary and Λ0, m real.
15Recall that some minima of the IIB potential sit at regions in parameter space where holomorphic volumes of

the Riemann surface are larger than the cutoff scale, rendering the regulated Riemann surface effectively degenerate.
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for s satisfying the boundary conditions [19],
∫
|ds|2 is nothing more than the scalar potential (24)

that arises in type IIB [19]16 Consequently, this last minimization step is mathematically equivalent
to the procedure that we follow in type IIB to find vacua. Agreement between the IIB and IIA/M
pictures is thus guaranteed whenever a type IIA interpretation of our M5 curve is valid.

Does this mean that the nonholomorphic features of (35) are unphysical after all? Despite the
fact that they cannot be reliably turned on at small gs, it turns out [19] that they are indeed
present over a wide range of parameter space at large gs where the probe approximation is valid.
In fact, for appropriate choices of other parameters in the problem, one can freely tune gsNj/m
from very small to quite large in the strongly coupled regime all the while maintaining reliability
of the M5 probe approximation. This means that gsNj/m seems to be relevant for controlling this
nonholomorphic behavior, and hence spontaneous breaking of SUSY, at strong coupling as well.
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