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The following are the notes I used to give this talk — they are written in a rather abbreviated
fashion, but all the content is there.

1 Preface

We’ll describe some applications of quaternionic geometry to supergravity with 8 supercharges: to
supersymmetric BH, their quantization, topological strings (and an extension thereof). Some of
these things are usually studied using special geometry, we suggest quaternionic geometry — and
the geometry of twistor spaces over quaternionic manifolds — will eventually be useful.

The reason is the reduction from d = 4 to d = 3, which has applications to:

• classical BH solutions (their description and also solution generating),

• their quantization,

• construction of partition functions (compactify Euclidean time),

• extended duality symmetries.

Work with M. Gunaydin, B. Pioline, S. Vandoren, A. Waldron. In progress!
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2 c-map

Begin with N = 2 supergravity coupled to n − 1 abelian vector multiplets, e.g. Type IIA on CY
with h1,1 = n − 1 (ignoring hypers). 2n − 2 scalar moduli of CY, n gauge fields. Chiral part of
action is

∫
d4θF(X0, Xa), F homogeneous of degree 2. Moduli ta = Xa/X0.

Theory reduced on S1 can first be described in components: has 4n scalars. 2n − 2 of these are
moduli ta from d = 4, 2n are Wilson lines ζΛ, ζ̃Λ, 2 are gravity sector eU , σ. Low energy theory
has quaternionic Kähler moduli space M. Classically, 2n + 2 triholomorphic isometries: shifts of
2n Wilson lines, σ, U . They form an extended Heisenberg group.

Constant curvature R = 4n(n + 2)ν. Metric purely in terms of special geometry data.

3 Quaternionic Kähler geometry

QK manifolds M have Sp(1) × Sp(n) holonomy, i.e. TCM = H ⊗ E preserved by Levi-Civita
connection. So replace µ → AA′. Natural target spaces for SUGRA coupled to hypers with 8
supercharges, e.g. in d = 4 or d = 3. Not Kähler: S2 of compatible almost complex structures at
each point. These define Z = P(H) → M, complex. Also have S = H → M, hyperkähler, with
natural SU(2) action rotating the complex structures, metric

ds2
S = |DπA′ |2 +

ν

4
r2ds2

M . (1)

(R = 4n(n + 2)ν.) Superconformal formalism naturally involves S, in much the same way as the
rigid special Kahler manifold appears in vector multiplet sector.

For σ-model into M, fermions are sections of E, SUSY parameters are sections of H.

δηψ
A
α = ∂µφAA′(γµ)β

αηA′β (2)

4 SUSY configurations

SUSY black holes in d = 4 have a time translation isometry, so can be viewed as configs in d = 3.

Consider SUSY-preserving radially symmetric configs: geodesics on M, with p = h⊗e. (Gloss over
analytic continuation.) ie, p[AA′p

B]
A′ = 0, all minors of 2 × 2n matrix pAA′ vanish. A complicated

quadratic constraint, solution space not linear!
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But SUSY configs have natural lift to S, provided by h. This lift gives economical description of
the SUSY configs. Pick coordinates (uℵ, uℵ̄) for “natural” C str on S. SUSY condition means all
uℵ̄ constant, ie pℵ = 0. If M has 2n + 2 triholomorphic isometries (as in c-map case) then also
pℵ̄ = gℵℵ̄

duℵ
dt = cℵ̄. Using gℵℵ̄ = ∂uℵ∂uℵ̄χ, this means ∂uℵ̄χ = cℵ̄t + dℵ̄. This is the attractor black

hole (including NUT charge). Conversely, any such config with zero SU(2) momentum descends to
supersymmetric solution.

To write the solutions in terms of 4-d field content is harder: need to work out relation between
(uℵ, uℵ̄) and coordinates on M, and determine χ.

5 Quantum version

This lift also allows to solve a quantum version of SUSY constraint: look at functions ϕ on M
(naive quantization of radial flow), then impose

(
∇AA′∇B

A′ + νεAB
)

ϕ = 0. (3)

(Curvature term determined by quaternionic invariance.)

If fix Noether (black hole) charges k = 0, qΛ, pΛ, then the lift leads to a natural solution,

ϕ(U, za, z̄ā, ζΛ, ζ̃Λ, σ) = e2U+ipΛζ̃Λ−iqΛζΛ
J0(2eU |Z|) (4)

where eU is the scale of the time direction and

Z = e
1
2
K(X,X̄)(pΛFΛ(X)− qΛXΛ). (5)

This is derived by quaternionic Penrose transform:
∮

of a class in H1(Z,O(−2)). (Analogue of the
standard Penrose transform for R4.)

If we look near U → −∞, see that ϕ is peaked near attractor points. Appearance of Z seems
appealing; but is this ϕ good for anything?

6 Geometry of holomorphic anomalies

Let Ms be moduli of complex structures on X: special Kähler manifold. L its canonical Hodge
bundle. Introduce M̃s = L → Ms (parameterize M̃s by periods of Ω). This is rigid special
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pseudo-Kähler, analog of S. Introduce generating function of chiral correlators:

Ψ(X, X̄, x, λ) = λ
χ
24
−1 exp




∞∑

g=0

∞∑

k=0

λ2g−2+k〈Oi1 · · ·Oik〉g,(X,X̄)x
i1 · · ·xik


 (6)

Introduce periods of λ−1Ω + xiδiΩ, call these xI , parameterizing H3,0 ⊕H2,1. Then Ψ is naturally
a function on T M̃s, neither holomorphic nor antiholomorphic, obeying 3n differential equations.

Further introduce
yI = (τ − τ̄)IJ x̄J (7)

and modify treatment of 0, 1 point functions in Ψ: then get Ψ̄ purely holomorphic, defined on
T ∗M̃s, obeying (

∂

∂XI
− i

2
CIJK

∂2

∂yJ∂yK

)
Ψ̄closed = 0. (8)

Just like a theta function (formally). Moreover, in Walcher’s approach to holomorphic anomaly of
the open string, similar manipulations give

[
∂

∂XI
− i

2
CIJK

∂2

∂yJ∂yK
+ iνIJ

∂

∂yJ

]
Ψ̄open = 0 (9)

where ν is the Griffiths infinitesimal invariant (νIJ = ∂I∂JT ). So it can be absorbed by a shift
Ψclosed(XI , yI) = Ψopen(XI , yI + νI).

Why does this occur? No obvious SUSY argument.

7 Hyperkähler structure, extended geometry of topological string

Note, T ∗M̃s is (one holomorphic-symplectic structure of) the rigid c-map space of M̃s. So could
try to use the SUSY in d = 3 to “explain” this holomorphy. Plea for help: why does T ∗M̃s occur
in these two “different” contexts?

Another clue that the full hyperkähler structure is good for something: one of the C str has complex
coordinates ReXI + iζI , ReFI + iζ̃I . This funny combination is just what appears in OSV.

Another clue that reduction to d = 3 is relevant for holomorphic anomaly: Heisenberg symmetry
of the projective c-map spaces M and S — related to the above by hyperkähler quotient. So this
d = 3 picture has a chance of explaining why this wavefunction property is there.
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And finally, there’s the fact that the SUSY configurations looked simple in this hyperkähler lan-
guage.

Heat equation gives (formal) geometry of topological string. What’s the analogous statement for
the higher-derivative couplings in d = 3? Don’t know, but a clue from representation theory:
consider cases where M = G/K. Then whatever the equations are they should be G-invariant.
i.e. we look for a representation of G. Recall holomorphic discrete series related to sections of line
bundles over symmetric spaces, holomorphic modular forms. Quaternionic discrete series similarly
realized in H1(Z,O(−k)). A rep in the limit of discrete series is very closely related to holomorphic
anomaly; this rep has also been constructed by geometric quantization, using hyperkähler geometry
of S. H1 related to indefinite metric in c-map space.

In some cases there’s a modular form out there waiting to be used (Gan); in principle should contain
all Gromov-Witten invariants plus more stuff.
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