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Introduction

This talk will be a review of old results and a presentation of new ones, and will be based
on work I did along many years with several collaborators, most prominently Ulf Lindström
and Rikard von Unge, and more recently Maxim Zabzine and my student Itai Ryb. Recent
relevant papers include [1, 2, 3].

The motivation from string theory of these ideas comes from the fact that in the NS-NS
sector the fundamental string carries B-field charge. This is reflected in a direct coupling in
the world-sheet string Lagrangian of the form

L ∼ (G + B)∂φ∂̄φ , (1)

and leads naturally to the study of two-dimensional σ-models of such a form. It turns out
that when we combine this Lagrangian with N = (2, 2) supersymmetry, we discover a lot
of very interesting geometry; indeed, susy σ-models seem to be intent on teaching us very
interesting mathematics.

The plan of the talk is as follows:
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• I will start reviewing some old results of my paper of 1984 with Gates and Hull on biher-
mitian geometry in N = (1, 1) superspace [4].

• I will then explain a mixture of old and recent results on the N = (2, 2) superspace
description of such geometries. This includes work with various collaborators as well as
work of Sevrin and his collaborators.

• Next I will discuss recent work that we have done on isometries in such spaces, including
current work in progress and lots of open questions.

• Finally, I will switch gears and describe how this fits into the framework of the Generalized
(Kähler) Geometry of Hitchin, Gualtieri and others. We will see that the sigma model
approach leads naturally to these geometric concepts, which look rather abstract otherwise.
For this reason it is very convenient to approach the subject by starting from a Lagrangian
and letting the mathematical structures emerge naturally.

Review of Gates-Hull-Roček

We start with an N = (1, 1) supersymmetric action in two dimensions, formulated in
N = (1, 1) superspace; this is automatically which is invariant under the usual N = (1, 1)
supersymmetry generators q±

δφi ∼ ε+q+φi + ε−q−φi . (2)

We are interested in finding additional supersymmetries, and we expect them to have the
form

δφi ∼ ε+J i
+jD+φj + ε−J i

−jD−φj , (3)

where D± are the left and right spinor derivatives of N = (1, 1) superspace that anticommute
with q±, and we have introduced two tensors J i

±j = J i
±j(φ

k). In my conventions, the signs ±
denote the Lorentz charge of left- and right-moving spinors rather than the U(1) R-symmetry
charge.

Requiring the supersymmetry algebra (3) to be closed, and to leave invariant the supersym-
metric version of (1), implies that:

• The tensors J± are almost complex structures, i.e. J2
− = J2

+ = 1, and they are inte-
grable, i.e., a coordinate system exists in which they are constant (not simultaneously,
unless [J+, J−] = 0).

• The metric g is bihermitian, i.e. is hermitian with respect to both complex structures,
so we have g(J±, J±) = g.
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• The two-forms w± = gJ± (the would be Kähler-forms)are not closed, dw± 6= 0, so the
geometry is not Kähler, and we have H = dB ∼ +J+dw+ = −J−dw−. In the case
J− = J+, it follows that H = dw± = 0 and the manifold becomes Kähler. So we
obtained a particular deformation of the notion of a Kähler manifold.

• Using the three-form H and the metric g, one constructs two connections that preserve
the tensors J±, i.e., ∇±J± = 0.

Notice that we can read off the complex structures J± from the supersymmetry transforma-
tions. We use this repeatedly below.

N = (2, 2) superspace formulation of GHR

This was a brief summary of N = (2, 2) supersymmetry in N = (1, 1) superspace; for more
tensors J±’s, one can also get N = (4, 4) in N = (1, 1) language.

The supersymmetry algebra (3) closes only on-shell except when [J+, J−] = 0 (which includes
the Kähler case). This suggests that for [J+, J−] = 0, a formulation using N = (2, 2)
superspace exists; this was found already in [4]. The resulting space is called a ‘Bihermitian
Local Product’ (BiLP) geometry. The name is chosen because when [J+, J−] = 0, we have
(J−J+)2 = 1, so the tangent space is the product of two subspaces with eigenvalues +1
and −1 under the local product structure J−J+. These subspaces do not necessarily have
the same dimension.1

The way it works is worth reviewing: In N = (2, 2) superspace, we have left and right chiral
and antichiral derivatives; since the conventions vary, here are mine:

Left Right
chiral D+ D−
antichiral D̄+ D̄−

(± indicates Lorentz charge, and the bar indicates U(1)R charge). Chiral superfields obey
D̄±Φ = 0 (that is, they are (cc) or chiral-chiral; their conjugates are (aa)) whereas twisted
chiral superfields obey D̄+χ = D−χ = 0 ((ca) or chiral-antichiral with (ac) conjugates).
When we reduce to N = (1, 1) superspace, we keep the real part of D as the N = (1, 1)
spinor derivative D, and explicitly expand in the imaginary part. The chirality and twisted
chirality constraints, e.g., 0 = D̄Φ = 1

2
(D + iQ)Φ, imply

Q±Φ = JD±Φ , Q±χ = ±JD±χ , J =

(
i 0
0 −i

)
(4)

1By the way, back then I asked my student Tom Buscher to study certain aspects of the beta functions
for this case, and this led to his discovery of the Buscher rules and T-duality [5]. This is an example of what
supersymmetric σ-models can lead to in the hands of a smart student.
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Thus J+ = J− = J for chiral superfields and J+ = −J− = J for twisted chiral superfields;
in both cases (and in the more interesting mixed case) [J+, J−] = 0. Note that if all the the
fields are twisted chiral, then we by a change of convention it is clear that the geometry is
Kähler. The interesting case arises when we have both chiral and twisted-chiral fields.

Semichiral superfields

A few years later, in 1987, Ulf Lindström, Tom Buscher, and I discovered semichiral super-
fields [6]. These are superfields that come as a quartet (c, ·),(a, ·),(·, c),(·, a):

D̄+XL = D̄−XR = D+X̄L = D−X̄R = 0

We realized immediately that reducing to N = (1, 1) superspace now gives:

Q+XL = JD+XL , Q+XR = ΨR+ , (+, L,R ↔ −, R, L)

where Ψ is an auxiliary N = (1, 1) spinor superfield and by an abuse of notation {XL,R}
now stands for the pair {XL,R, X̄L,R}. To find the complex structure, one needs to solve for
the auxiliary spinor Ψ. Unlike the case we considered above, now the form of the complex
structures J± do depend on the form of the action, and one finds that the resulting J± do
not commute.

Not much happened with these models for almost a decade, until in 1996, when Sevrin and
Troost studied them in [7]. They found the explicit coordinate system that diagonalizes the
complicated complex structures (such coordinates must exist, since the complex structures
are integrable). They speculated that chiral, twisted chiral, and semichiral multiplets were
sufficient to describe all N = (2, 2) nonlinear σ-models, but were unable to prove this was
the case. Their conjecture was finally proved in [1], and we now discuss the ideas that enter
in the proof.

The general N = (2, 2) Superspace Lagrangian

The general Lagrangian is the most naive thing that you would guess: a generalized Kähler
potential that is simply a function (locally) of all the types of superfields we have seen:

K(XL, X̄L, XR, X̄R, Φ, Φ̄, χ, χ̄) (5)

This function is not globally defined–it can be shifted by generalized Kähler transforma-
tions. These follow immediately from the superspace measure, which can be expressed as
D+D−D̄+D̄−. We can therefore change the potential (5) by any term which is annihilated
by this measure, and the most general transformation of this type is

∆K = fL(XL, Φ, χ) + fR(XR, Φ, χ̄) + c.c. ,
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where D̄+fL = D̄−fR = 0. These transformations of the potential turn out to be very
different from the standard Kähler case, because the transformation functions fL and fR

themselves are ambiguous. To see this, note that if we change

∆fL = g(Φ) + h(χ) , ∆fR = −g(Φ)− h̄(χ̄) , (6)

then ∆K remains invariant. As we go from one open set to another, we expect that we need
∆K shifts to make K nonsingular (by analogy with Kähler transformations). However, in
triple overlaps, we may find ∆fL,R terms, so K is not just a section as in the Kähler case,
but we really have to use gerbes. I am not an expert on these, but we are currently exploring
this aspect, which I believe has not been noted before.

Another important point is that, much like in the Kähler case, when we have multiple
complex structures for the left and the right movers, this leads to generalized hyper-Kähler
models.

Question: Are there explicit examples of these geometries for compact spaces?
Answer: If we are interested in concrete examples of these Lagrangians, the best known case
with a compact target space is the Hopf fibration of SU(2)× U(1), which can be described
with a single chiral and a single twisted chiral multiplet. There are examples involving
other group manifolds. The group SU(3) involves one chiral, one twisted chiral and one
quartet of semichirals. There are other compact generalized Kähler manifolds which have
been constructed in the mathematics literature, but whose explicit realization in terms of
superfields is not known yet.

Question: Are these non-linear sigma models conformal invariant?
Answer: First of all if you are in the N = (4, 4) case you are guaranteed to have conformal
invariance at the quantum level. This happens for example in the SU(2) × U(1) case.
Otherwise you have to look at the beta functions, and generalized Monge-Ampere equations
show up. This was first studied by Grisaru and collaborators [8], and recently Halmagyi and
Tomasiello found a nice way of rewriting and understanding these equations [9].

Diagonalizing J±

We will now see how to find the right coordinates in these geoemtries. This is not just an
academic exercise, since, as we will see, we will gain a deep insight into the meaning of the
potential K in (5).

Returning to the issue of Ψ, we reduce to N = (1, 1) superspace by rewriting the measure as
D+D−Q+Q−, and pushing Q± into the Lagrangian; the ΨR+ = Q+XR field equation comes
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from integrating out its conjugate variable, ΨL− = Q−XL; this is easy to calculate:

Q+

[
(Q−XL)

∂K

∂XL

]
= −(Q−XL)Q+

(
∂K

∂XL

)
+ (JD+Q−XL)

∂K

∂XL

, (7)

which, after integration by parts, leads to the equation of motion

Q+

(
∂K

∂XL

)
= JD+

(
∂K

∂XL

)
. (8)

Comparing with (4), this clearly means that the coordinates XL, YL ≡ ∂K
∂XL

diagonalize J+;

similarly, the coordinates XR, YR ≡ ∂K
∂XR

diagonalize J−.

This is a beautiful example of how σ-models in superspace “know” profound things about
the geometry. We immediately recognize this situation as arising in Poisson geometry:
K(XL, XR) is the generating function of a canonical transformation from the coordinates
XL, YL to the coordinates XR, YR. However, we need to identify the appropriate Poisson
structure. To do this, we consider the geometric meaning of the different superfields that we
have introduced.

Geometry of the superfields

We would like now to uncover the geometrical significance of the different superfields that
we have introduced. From the definition of the different superfields, we have that

{dΦ} = ker(J+ − J−) (9)

{dχ} = ker(J+ + J−) (10)

{dXL,R} = coker
(
(J+ − J−)(J+ + J−)

)
= coker([J+, J−]) (11)

Since the cotangent space is a direct sum of the rhs of the above three equations, we see that
our three types of superfields cover all the directions for a given pair of complex structures
J±, and the integrability conditions show that the superfields make sense as coordinates.

There are also two remarkable facts which I will mention without proof:

• The first is that both π± = (J+±J−)g−1 and σ = [J+, J−]g−1 are Poisson structures! That
is, they define a good Poisson bracket because they obey the Jacobi identities. When any
of them is invertible (e.g., π+ in the Kähler case), their inverse is a symplectic (closed and
nondegenerate). This is a nontrivial calculation using the fact that the covariant derivatives
with torsion preserve J±.

• The second fact is that using the hermiticity of g, one discovers that the two-form σ is the
real part of a holomorphic (2, 0) Poisson structure with respect to both J±. In other words,
it has only (2, 0) and (0, 2) components, but no (1, 1) piece.
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This last point is what we were looking for, because it tells us what is it that the canonical
transformation generated by K is preserving: σ! The X and Y coordinates are nothing but
Darboux coordinates for σ:

σ = Re

(
∂

∂X
∧ ∂

∂Y

)
(12)

both for X = XL, Y = YL and X = XR, Y = YR

This gives a beautiful interpretation of the N = (2, 2) superspace Lagrangian: it is the
generating function of the canonical transformation that preserves σ and takes us between
coordinates that diagonalize J+ and coordinates that diagonalize J−. A caveat is that this
does not determine the Φ, χ dependence; but that is more data that is needed for the
geometry, just as in the case without XL,R.

An interesting point is that whenever we perform a canonical transformation we use half of
the old coordinates and half of the new coordinates. The breaking up of the left coordinates
into XL and YL is arbitrary, and similarly for the right coordinates. The arbitrariness when
selecting the {XL,R} from the set {XL,R, YL,R} is a choice of polarization. One can ask: is
this choice intrinsic to the geometry? The answer is no. It is very easy to change polarization
by changing the generalized Kähler potential to

K̃ = K −XY (13)

Note that the change of polarization is very natural in the sigma-model language–it looks
like a kind of duality for the semichiral fields. This follows because the semichiral chiral
condition is solved by, e.g., D̄+XL = 0 ⇒ XL = D̄+Ψ−, where Ψ− is some unconstrained
spinor; hence, when used as a Lagrange multiplier, it imposes the semichiral condition again.
(A similar analysis shows that a chiral superfield imposes a linear constraint, not a chiral
one).

The changes of polarization become very interestingly when we think of the global structure
of the manifold, because we might have to change polarizations as we go from patch to patch,
and nothing is known about this point.

This interpretation of K as the generator of canonical transformations is the crucial element
used to show that all generalized Kähler geometries can be described by these superfields [1].

Isometries and Topological Models

This is an area on which we have just written the paper [3], and is being actively pursued.
My prejudice is that to understand the isometries one look at them through the sigma model.
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The isometries can be gauged, and notions of generalized T-duality and generalized mirror
symmetry arise.

The idea is that there are four kinds kinds of isometries, classified according to the properties
of the vector k generating the isometry. The latter can be chiral, twisted chiral, mixed or
pure semichiral, as we see in the table below.

Chiral k = π+ξ
Twisted chiral k = π−ξ
Mixed k = general
Pure semi k = σξ

Here ξ is some one-form, and π±, σ are the Poisson structures described above. We are
studying the moment maps associated to this isometries and we have some results on this
already. One interesting question that arises is the following. In the case of abelian isome-
tries, we know that a polarization can be chosen which is preserved by the isometries, but
it is not known if this is also possible for non-abelian isometries. This is an important open
problem.

Another subject under study is the topological twist of these models. In general when one
does, e.g., an A-twist for chiral fields, it is a B-twist for twisted chiral fields, but it should
be more complicated for semichiral fields.

Question: What happens when you gauge an isometry?
Answer: We have studied some examples with U(1) isometries. The resulting metric can
be singular, but that does not mean that the gauged theory is singular, as we know from the
example of the gauged SU(2)/U(1) WZW models.

Generalized Geometry

A few years ago, Hitchin proposed an idea to generalize the notion of complex geometry. We
know that a complex geometry has a natural action and both the tangent and the cotangent
space. Suppose we look at something that acts on the direct sum. This leads to define an
object called Generalized Complex Structures on T⊕T ∗. This is a very useful object because
it contains what would be a Ramond-Ramond flux (of course we do not know how to write
a sigma model for that, but we can write supergravity models). There is a very nice review
written by my collaborator Maxim Zabzine [2], where it is shown that these Generalized
Complex Geometries can be naturally derived from a Hamiltonian superspace approach.

As it turns out, all the structures we have discussed fit nicely in the context of Generalized
Complex Geometry. In the usual Kähler case, we can write several complex structures

J1 =

(
J 0
0 −J t

)
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J2 =

(
0 −ω−1

ω 0

)

and one can show that there is a pair of J1 and J2 such that the metric satisfies

G =

(
0 g−1

g 0

)
= −J1J2 = −J2J1

In the Generalized Kähler case which we have been discussing, we have

J1 =
1

2

(
J+ + J− ω−1

+ − ω−1
−

−ω+ + ω− −J t
+ − J t

−

)

J2 =
1

2

(
J+ − J− −ω−1

+ − ω−1
−

ω+ + ω− −J t
+ + J t

−

)

so when J− = J+, then J1 and J2 are reduced to the previous case. This pair of complex
structures also satisfies

G =

(
0 g−1

g 0

)
= −J1J2 = −J2J1

There is a general characterization of the Generalized Complex Geometries, precisely in
terms of two complex structures J1 and J2, which should satisfy the above properties, along
with some integrability conditions. Now, Gualtieri in his PhD thesis [10] proved that having
J1 and J2 which satisfy these properties is entirely equivalent to the bihermitian complex
geometry that we had.

The integrability conditions are very similar to those of the ordinary complex structures, but
the ordinary Lie bracket is replaced by new object called the ”Twisted Courant Bracket”.
This new bracket does not obey in general the Jacobi identity, but it does obey it inside some
interesting subspaces, as for example spaces which are holomorphic w.r.t. the generalized
complex structures.

There is a supergravity formulation of these ideas, where Clifford algebras appear along
with pure spinors, which arise in generalized Calabi-Yau geometries. This lies outside of the
generalized Kähler framework that we have been discussing, and corresponds to turning on
RR fluxes. Not surprisingly, no σ-model interpretation is known of them as yet.

Added note: RR fluxes can be treated on the world sheet in the formulations due to Berkovits.
Understanding generalized geometry in this framework would be very interesting.
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