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Controlled coupling of charge qubits
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BR‘\\‘X!NK Quantum dynamics of Josephson \

junctions

» Superconductor can be thought of asa BEC of Cooper pairs:
one single-particle state

Y =+/né
occupied with macroscopic number of particles. The phase f

and the number of particles n are conjugate quantum variables
(Anderson, 64; Ivanchenko, Zil’ berman, 65):

[n, ]=i.
Thisrelation describes dynamics of addition or removal of

Q\rti cles to/from the condensate. /




ﬂhis dynamics manifests itself most directly in Josephson\

tunnel junctions, and was studied as an example of macroscopic
guantum dynamics (L eggett, 80).
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H=-Ec1?/1 ?- Ejcosj +Ug( ),  Ec° (29)?/2C.

* If quantum fluctuations of phasef become large, junction
behavior can be described as a semiclassical dynamics of charge
that leads to controlled transfer of individual Cooper pairs
(Averin, Zorin, Likharev, 1985).

\ H =Ec(n- g)°- E;/2(|n)(n+1|+|n=1)(n)). /
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For E,<<E.and g 1/2, the charge tunneling dynamicsin an
10l ated indivi dual junction isdirectly reduced to the two-state

Q Ec(@-Y2)s - (E,/2)s,
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Two coupled charge qubits
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En1n2 = Ecl(ngl_n1)2 + Ecz(ngz_nz)z +

+ Em( ngl_nl) (ng2_n2)’
Em = e'ZCm/ (Cs 1Cs 2 sz)

Yu. A. Pashkin et al.,
Nature 421, 823 (2003).
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Variable electrostatic transformer:
controlled coupling of charge qubits

Equivalent circuit of the Gate-controlled qubit
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coupling capacitance:

QVM /19 ="T%e,(dg +0)/19°




Charging diagram demonstrates
transition from positive to
H =ns s ,, negative coupling

Coupling strength:

n =[ey(dy +C) +ey(qy - €) - 2e4(qy +C)]/4

c=Cp/Cq, Go=0g*+cQ_,, (0 - ¥2)
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The trade-off between the information acquisition by the detector
and back-action dephasing manifests itself in the directly

measurable quantity in the case of measurement of coherent
guantum oscillations in a qubit.

_—MZ_ o,f Hp o(t) H=- %s  ts ., f+Hp

o—— ——0

Spectral density S (w) of the detector output reflects coherent
guantum oscillations of the measured qubit:

a’ D’
4 w?- D’)*+Gw*

The height of the oscillation peak in the output spectrum islimited
by the link between the information and dephasing:

Srex /Sq £ 4

Sow) =5, +



Linear-response theory enables one to develop quantitative
description of the quantum measurement process with an arbitrary
detector provided that it satisfies some general conditions:
* the detector/system coupling isweak so that the detector’s
response islinear;
* the detector isin the stationary state,
e the response is instantaneous.

o D.V.A., cond-mat/00044364,

He |Hp=xt| Hp o(t) cond-mat/0010052, and to be
© published.

S.Pilgram and M. Blittiker,

PRL 89, 200401 (2002).

H=Hs+Hp+x A.A. Clerk, SM. Girvin, and

A.D.Stone, cond-mat/0211001.
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where ?isthe linear response coefficient of the detector, S and S,
are the low-frequency spectral densities of the, respectively, back-

action and output noise, ReS,, isthe classical part of their cross-
correlator.

Thisinequality shows that finite response coefficient implies that
that noise generated by the detector is non-vanishing. Although it
was obtained from the linear-response theory, it has broader
meaning in that it characterizes the efficiency of the trade-off
between the information acquisition by the detector and back-action
dephasing of the measured system. The detector that satisfiesthis
Inequality as equality iscalled 'ideal’’ or "quantum-limited’’.



Quantum non-demolition measurements of a qubit

QND measurement avoids the Suppression of backaction should

detector backaction by manifest itself as more pronounced
employing specially designed oscillation line in the output spectrum of
detector-qubit coupling which detector S,when the detuning d=?-O is
effectively measures qubit in the small in comparison to the backaction
rotating frame that follows the dephasing rate G

gubit oscillations: 15—

H=-2s, -1(s,cosW +s,sinW)f +Hp

For flux qubits, the QND coupling can be
Implemented with SFQ circuits, either
directly or as a periodic sequence of the
D.V.A., PRL 88, 207901 (2002). ~  single-shot” measurements.




Semi-QND qubit measurements
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