
Recent progress on the 

Quantum Reverse Shannon Theorem,

by Andreas Winter and Igor Devetak ,
urged on by C.H. Bennett (IBM Research Yorktown)
building on previous work of Peter Shor and Aram Harrow   

SUNY Stony Brook 28 May 03



Q   plain quantum capacity = qubits faithfully trasmitted per channel use, 
       via quantum error correcting codes

C   plain classical capacity = bits faithfully trasmitted per channel use 

Q2   classically assisted quantum capacity,  i.e. qubit capacity in the 

        presence of unlimited 2-way classical communication, (e.g. using 

        entanglement distillation and teleportation)

CE     entanglement assisted classical capacity i.e. bit capacity in the 

         presence of unlimited prior entanglement between sender and

         receiver.

Multiple Capacities of Quantum Channels

Bob

AliceAlice
Noisy quantum channel

(+ special capacities, eg with restricted encoding/decoding C11, C1A)
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Erasure Probability

Capacities of Quantum Erasure Channel

Quantum Erasure Channel

input qubit sometimes lost 
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Q    ≤ Q2 ≤ C     ≤ CE   =  2QE

conjectured

by definition

Inequalities among major capacities

All inequalities may be = or < depending on channel

by teleportation
and superdense
coding
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Equal entropy

Entropic quantities related to channel capacities.

C =? Holevo capacity =  max   S(N(ρ)) −Σpi S(N(ρi))

Q = Coherent Information =  lim max   S(N(ρ)) −S(E(ρ))

CE = Quantum Mutual Info. = max  S(ρ) + S(N(ρ)) −S(E(ρ))

Q2  ≈ Distillable entanglement = ??

{pi ,ρi}

n→∞ ρ

ρ

Shor 
’02

max D(I⊗N(Φρ)) = ?
ρ

(LOCC-distillable entanglement D has no simple expression,  may be nonconvex)

= if max
Entropy
output is
additive
Shor ’03
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Entanglement-Assisted capacity CE of a quantum channel N is equal to 
the maximum, over channel inputs ρ, of the input (von Neumann) entropy 
plus the output entropy minus their “joint” entropy (more precisely the joint 
entropy of the output and a reference system entangled with the late input)
(BSST 0106052, Holevo 0106075).  

Thus, in retrospect, entanglement-assisted capacity is the natural quantum 
generalization of the classical capacity of a classical channel.

Simplification:  CE = 2QE for all channels, by teleportation & superdense 
coding.

CE (N) = maxρ S(ρ)  + S(N(ρ)) − S(N⊗I(Φρ))

(entangled 
purification 
of  ρ)



Bob

Bob

Alice

Classical Shannon Theorem:  
A noisy channel can  simulate a noiseless channel 

=

Alice

=

Homer Simpson's Reverse Shanon's Theorem:  
A noiseless channel can simulate a noisy channel.

Classical Reverse Shannon Theorem (0106052)



Bob

Alice
=

Bob

Alice =
Common
Random
Source

A Better Reverse Shannon Theorem (quant-ph/0106052) 
In the presence of shared random information between sender and receiver,
a noiseless channel can asymptotically simulate a noisy one of equal capacity.

Therefore, in the presence of shared random information,
all classical noisy channels are asymptotically equivalent. 
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≈N ⊗m(ξ1⊗ξ2...⊗ξm)

CE(N))

The complicated theory of quantum channel capacity would be greatly
simplified if the Quantum Reverse Shannon Theorem (QRST) were
true: any quantum channel can be asymptotically simulated by prior 
entanglement and an amount of classical communication equal to 
its entanglement assisted capacity.  Then, in a world full of entanglement, 
all quatum channels would be qualitatively equivalent, and quantitatively
could be characterized by a single parameter. 

≈mCE(N) 
classical bits)

ξ1⊗ξ2...⊗ξm

all quantum

Ψ
(Ψ )
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Output of simulation, including reference system, 
should have high fidelity with respect to 
(N⊗I) ⊗m (Φρ), the output on the same input of  m
copies of the channel being simulated.

More generally, we should demand high fidelity on
entangled purifications of a mixed state input ρ

m CE(N)
bits



Last year Shor showed that the QRST holds for all (quantum 
discrete memoryless) channels when their inputs are drawn from 
a known fixed distribution ρ.  This is the quantum analog of a 
classical IID source.  Recent work of Devetak and Winter has 
generalized this to non-IID sources, known or unknown, provided 
the source is not entangled between channel inputs. 

For many channels, the QRST holds for arbitrary sources even if 
the inputs are allowed to be entangled across multiple instances
of the quantum channel being simulated. 

The ability to properly simulate a completely general source is 
important because, for a channel simulation to be considered 
faithful, it ought to accurately simulate what the channel would
do even on atypical inputs which a malicious adversary might 
send to expose the weaknesses of the simulation. 



Kinds of sources:

Tensor Power (analogous to classical IID):  ρ = ρ⊗m

Tensor Product:    ρ = ρ1⊗ ρ2⊗ ρ3⊗...

with each factor in   Η in

(Arbitrary pure:  ψ = a general pure state in  Η ⊗m )

Most general:  any pure state  Ψ in

in

Η ⊗m ⊗Η ⊗m
inin

m channel inputs
Purifying 
reference 
system

(the worst an 
adversary 
could send)



Winter’s Measurement Compression

Given a density matrix  ρ and a POVM a = {aj}, define the one-shot output 
probabilities λj=Tr ρaj., and the square root ensemble ρj = (√ρ) aj (√ρ) / λj
realizing ρ. Then for any tolerance ε>0, there exists a block size l and a 
POVM  B, which is a good approximation to A=a⊗l,  and where B can be 
expressed as a convex combination  B=Σν xνBν of constituent POVMs Bν each 
having at most M outcomes, where  log M ≈ l (S(ρ) - Σj λj S(ρj) )  is the Holevo 
information of the square root ensemble.  The approximation is good in the 
sense that for any entangled purification Φ of ρ⊗l,  
F((A⊗Ι ) Φ , (B⊗Ι ) Φ ) > 1- ε.    

On any tensor power source ρ, the POVM  a,  regarded as  QC 
channel, can be asymptotically simulated by shared randomness 
and an amount of forward classical communication approaching 
the quantum mutual information of   a   on  ρ.

QMI (a,ρ)   ≡ S(ρ)  + S(a(ρ))  − S (a⊗I(Φρ)).

S(a(ρ)) + Σj λj S(ρj)

=

= QRST for 
QC channels 
on known IID 
sources



Sketch of Shor’s proof of QRST for tensor power sources, using 
Winter’s compression theorem. Alice’s wants to simulate a general 
noisy channel N, using shared entanglement and as little classical 
communication to Bob as possible.  Let N  be defined by the Kraus 
operators {Nk : k=1…δ} so on input state ρ the channel output is 
Σk Nk ρ Nk

† .  Let Φin and Φout denote projectors onto maximally 
entangled states sized to the input and output dimensions of N. Let 
Uj be  dout dimensional generalized Pauli matrices.

Generalized Teleportation:  Alice performs a POVM with elements 
(I⊗ U*

j N*
k) Φin (I⊗ NT

k UT
j) on the input and her half of a specimen 

of Φout, after which she tells Bob only j, the index of which Pauli she 
performed.  He undoes the Pauli, and is left with N (ρ).  Τhis uses 2 
2log dout bits of classical communication.

Measurement compression: For large block size m, Alice and Bob 
approximate this POVM by another with an intrinsic cost of  
m (QMI (N,ρ)) + o(m)
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Entanglement 
for Teleportation

Shared Randomness
for Winterization (can
be created using more
entanglement)

N
Φρ⊗m

≈ (I⊗N )⊗m (Φρ⊗m)

Overall picture

Winterized
Combination 
of N=--and 
Bell mmt.

m QMI (N,ρ)



Lower bounds.  For any channel and any tensor power 
source the entanglement assisted cost of simulating the 
channel on that source must be at least the QMI of the 
channel-source combination.  Otherwise causality would 
be violated.  In particular, the cost of simulating a 
channel on an unconstrained source must be at least CE



This establishes QRST for a general channel on known IID source.

For a general channel on an unknown IID source, we use gentle 
tomography on a large block of inputs to estimate the source without 
disturbing it significantly.  

For a CQ channel on an arbitrary source, Alice performs the initial C part 
of the channel on a large block of m inputs and makes a copy of the results.  
These results will be unentangled between channel instances, but may not 
be IID.  Using o(m) bits, Alice tells Bob the frequency distribution (type 
class) of the measured results and they then simulate the full CQ channel on 
this type class. (Alternatively, this may be viewed as remote state 
preparation of mixed states which can be done at the cost of the Holevo 
information of the ensemble, which equals the QMI.)

For a Bell-diagonal channels on arbitrary sources, the noisy quantum 
channel is directly equivalent to teleportation through a noisy classical 
channel, which can be simulated using the classical reverse Shannon 
theorem.  



To extend QRST to an unknown tensor power source we
use gentle tomography to estimate   ρ from a large number m of
copies of   ρ without much disturbing the global state.
(Hayashi & Matsumoto 0202001, Presnell & Jozsa EQIS02, A. 
Harrow in prep). 

This may be viewed roughly as 
choosing a random mesh on the 
parameter space of  ρ coarse 
enough  (∝ 1/√m )  so that for 
any ρ,  a measurement on ρm, of 
which cell the average falls into 
will almost always yield the 
same result. This measurement, 
when conducted coherently, will 
therefore scarcely disturb the 
global state.  



With gentle tomography, we get an estimate ρest of the unknown 
density matrix ρ and its quantum mutual information.   
But unfortunately the typical subspace of ρest

⊗m has little overlap 
with the typical subspace of the true ρ⊗m . 

So (crudely speaking):  we do a compressed teleportation using a
version of Winter’s theorem designed not for the estimated 

source ρest
⊗m, but rather for a (non tensor power) source ρcell

corresponding to the average over a  finer mesh ρ1
⊗m… ρN

⊗m of 
density matrices in the same tomographic cell as ρest .  

This finer mesh has only polynomially many (in m) points but is 
still fine enough so that the true density matrix source ρ⊗m has 
good fidelity with at least one of the ρk

⊗m. 



region of tomographic uncertainty of  ρ

region of high fidelity between  ρ ⊗m and  ρ′ ⊗m

Fine mesh of  N = poly(m) 
density matrices ρk covering 
the original tomographic cell

ρcell =  (1/N) Σ ρk
⊗m

The true ρ⊗m has high fidelity to 
some  ρk ⊗m , which in turn has  

nonnegligible participation  in  ρcell .



Even though ρcell consists 
mostly of states atypical of ρ⊗m , 
nevertheless, for any forward 
classical communication rate R
exceeding the QMI on ρest , the 

fidelity (1−ε) of simulation on ρcell

is so good that it must be pretty good 
on ρ⊗m also, approaching unity in 
the limit of large m.  

ρcell = δ(m) ρk⊗m + (1−δ(m)) ρother

with δ(m) →0 subexponentially.  But
ε(m) →0 exponentially, so ε(m) / δ(m) → 0.

Finally,  we use the fact that 
the fidelity of measurement 
compression approaches 1 
exponentially with increasing 
block size, for any forward 
communication rate R 
exceeding the QMI.  



Each heavily occupied cell 
is coded by applying 
measurement compression 
to the known tensor 
product of density matrices 
it contains, at a cost of the 
QMI for that cell.

The few remaining points are then 
teleported exactly, without com-
pressing, at negligible extra cost.

Extension to a known tensor product source:  ρ = ρ1⊗ ρ2⊗ ρ3⊗...

Divide the parameter space into coarse cells and note in which cell 
each known tensor factor ρi falls.   For large m, most ρi will fall into 
heavily occupied cells.

Total cost  =  Σi QMI(ρi )  = QMI(ρ)



Extension to an Unknown tensor product source

ρ = ρ1⊗ ρ2⊗ ρ3⊗... ρm
(Assume for now that the factors are drawn from a finite set that 
does not increase with increasing block size m.  This assumption 
will be removed later). 

Define ρpermuted as an equal mixture of randomly  permutated 

versions of ρ,  and  ρave as the average of the single-symbol density 

matrices in ρ.   Unfortunately  ρpermuted ≠ ρave
⊗m .

But fortunately the fractional participation of  ρpermuted in   ρave
⊗m

decreases only polynomially with m. Thus a good simulation on  

ρave
⊗m guarantees a good simulation on ρpermuted and therefore 

(since the simulation is symmetric)  on ρ.



If the unknown tensor factors do not come from a finite set, 

it can be shown there is a state with high fidelity to ρpermuted

whose participation ration in  ρave
⊗m decreases more slowly 

(albeit still exponentially) than the rate of convergence of 
measurement compression.  



≤ QMI of randomly 
permuted source, equal to m  
times the average QMI of 
the single-symbol sources

Unknown tensor 
product (general
separable source)

≤ CE ,
sometimes     
equal 

Cost = quantum mutual information (QMI) 

of  source-channel combination
QMI (N,ρ) = S (ρ)   +  S (N(ρ))  − S (N⊗I(Φρ))

Bell
diagonal

≤ 2 log min{din ,dout}
(crude teleportation 
bound)

≤ QMI of 
collapsed 
source (after 
initial von 
Neumann 
mmt.) 
sometimes 
equal

Unconstrained 
(inseparable) 
source

Known tensor
Product 

Unknown tensor 
power

Known tensor power

General ChannelClassical
or CQ

channel
source

Classical cost of entanglement assisted channel simulation



Open questions:

Capacity relations, e.g.   Q2 ≤ C,   Q2 ≤ CE , 

Additivity question for unassisted classical capacity C, 
entanglement of formation, or maximal output entropy. 

Prove QRST for the most general source model, with inter-
symbol entanglement, or else find a counterexample, i.e. a 
channel that,  for some (entangled) source, requires more 
classical communication to simulate than the CE of the channel. 

The question of whether the QRST is violated with inter-source 
entanglement is reminiscent of, but will probably not help solve, 
the question of whether inter-symbol entanglement increases 
classical capacity (the famous additivity question). 


