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Trapping ions: static E-field??? 
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Practical trap designs 
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3-layer lithographic linear trap
• RF nodal line (ion string)

• static voltage compensation electrodes

• 200 micron size (strong confinement)

• 3-layer geometry allows multiplexing,      
T-junctions, etc.
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Ring-and-fork quadrupole trap
• easy to build and operate

• good optical access

• trapping few ions near RF null
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Trapped ions - as seen on TV 

Two Cd+ ions in a 3 MHz trap (~2 µm separation)

Three Cd+ ions in a 3 MHz trap (~2 µm separation)

Multiple-ion helical crystal (Cd+

and possible impurity). Weak trap 
(~0.5 MHz, 6µm separation)
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Trapped ions as qubits
• Strong confinement in an RF trap (1-10 MHz) - qubits well localized
• Long-lived atomic levels form extremely stable qubit (“God’s qubit”!)
• Efficient qubit state detection by fast cycling transitions
• Initial state preparation by optical pumping with near-perfect efficiency
• Qubit rotations using microwaves or lasers
• Quantum logic gates via strong Coulomb  interaction between ions
• Coupling to “flying qubits” (photons) using cavity QED
• Sympathetic cooling to reduce decoherence
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Single qubit rotations via stimulated Raman transitions

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

Raman pulse time (ms)

Fl
uo

re
sc

en
ce

 c
ou

nt
s

Solid state Raman beam source at 229 nm to experiment

7/18

Melles-Griot
Nd:YAG x 2

400 mW at 458nm

229 nm
40 mW7.27 GHz

E-O PM
x 2

BBO
Sideband-shaping

(e.g. Mach-Zehnder)



Sympathetic cooling of Cd+ isotopes

Two different Cd+ isotopes loaded 
in the trap.

One ion is constantly (Doppler) 
cooled, while the other may be 
heated.  Extra heat from the latter 
is absorbed by the cooling ion.
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Entanglement of trapped ions

• Coulomb-force based entanglement:  

- Cirac-Zoller CNOT gate (1995) - spin-state coupled to 
phonons of ion crystal vibrations

- MØlmer-SØrensen gate (1999) - spin-state coupled to 
phonons of ion crystal vibrations, but motional states never 
populated

- Cirac-Zoller “push” gate (2000) - phase gate through direct 
Coulomb repulsion of neighboring ions

• Photon-mediated entanglement:

- trapped ion-cavity QED merger – spin-state mapped onto field 
state inside the fight-finesse optical cavity
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Cirac-Zoller CNOT gate

1. Ion string is prepared in the ground state of motion (n=0)
2. Control ion’s spin state is mapped onto quantized motional state of the 
ion string
3. Target ion’s spin is flipped conditional on the motional state of the ion string

|↓〉

|↑〉

control target

4. Motion of the ion string is extinguished by applying pulse #2 with 
negative phase to the control ion

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)
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Phase “push” gate 
• Ions prepared in Lamb-Dicke limit
• Spin-dependent dipole force (edge of a Gaussian beam waist or a 
standing wave) is applied to both ions
• The |↑〉 part of ion is displaced; extra phase is acquired if both ions 
were in state |↑〉
• Ions brought back to rest
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Cirac and Zoller, Nature 404, 579 (2000)
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Scaling up?

• Original Cirac-Zoller gate:
- size determined by number of ions in a single trap -
can be scaled up by making larger trap

- but : ground-state cooling of motion is required -
very hard for large ion crystals!

• MØlmer-SØrensen and “push” two-ion gates:
- only work for a pair of ions
- no ground-state cooling requirement
- could be scaled by creating arrays of interconnected 

traps, each containing one ion qubit
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Large-scale ion trap quantum computer architectures

ion traps

“conventional” strong coupling

applying spin-dependent
force to entangle ion pairsconnecting multiple traps, ion shuttling 

between storage regions and pairwise
entanglement areas
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D. Kielpinski, C. Monroe, D. Wineland, Nature  417, 709 (2002) Cirac and Zoller, Nature 404, 579 (2000)
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Speeding up?

• Gate speed:
Phonon-mediated gates (CZ and MS gates):

- collective motion of ions used as data bus – gate speed 
must be much slower than ωTrap ~ 1 MHz 

“Push” gate:
- entanglement through direct Coulomb interaction (ions 
don’t even have to be in the same trap!), so can be fast

• Gate repetition rate:
Multiplexed traps:

- depends on shuttling speed and distances - smaller 
traps beneficial!
- need efficient cooling to quench motional heating
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Microfabricated trap arrays

4 mm

• ~40 micron 
transverse size 

• good control of ions’ 
positions with static 
voltage electrodes

• qubit ions stored in 
individual traps

• ions shuttled between 
traps using static 
electric fields

100 µm

40 µm
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Pushing ions with a pulsed laser - experiment
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Detecting pushing of ions

• Detecting the ion fluorescence oscillations due to Doppler shifts
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• Measuring (very large) AC Stark shifts caused by strong laser field
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Conclusions  and outlook

• Trapped ions hold a great promise for practical quantum computation

• Large arrays of ion traps provide suitable environment for qubit
storage and manipulation

• Micro-traps would allow faster quantum logic, as well as capability of
coupling the ions to optical fields

• Novel methods of trapped-ion entanglement using strong pulsed laser 
force are studied to increase the gate speeds
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