Quantum Communication & Computation Using Spin Chains

Sougato Bose
Institute for Quantum Information, Caltech & UCL, London

Quantum Computation Part:

Quantum Communication Part:
S. Bose, quant-ph/0212041
1D Bulk Magnets are Natural Spin Chains (Examples):

\[\text{Cu(C}_4\text{H}_4\text{N}_2)(\text{NO}_3)_2 \]

\[J'/J < 10^{-4} \]

\[J/k_B \approx 10.6 \text{ K} \]

Isotropic Heisenberg Antiferromagnet:

\[\mathcal{H} = \sum_i [J \mathbf{S}_i \cdot \mathbf{S}_{i+1} - g \mu_B \mathbf{H} \cdot \mathbf{S}_i] \]

P. R. Hammar et. al., PRB 59, 1008 (1999).
Quantum computation using a 1D magnet

Quantum computation by applying a time varying and inhomogeneous magnetic field to a spin chain.
Heisenberg Chain to Ising Chain Conversion:

Heisenberg

A, B = Zeeman Energies, \(|A-B| \gg J\)

Ising

If

\[\hat{H} = \hat{H}_{\text{Zeeman}} + \hat{H}_{\text{int}} \]

Where,

\[\hat{H}_{\text{Zeeman}} = \sum_{i=1}^{N} E_i(t) \hat{\sigma}_i^Z, \quad \hat{H}_{\text{int}} = J \sum_{i=1}^{N-1} \hat{\sigma}_i \cdot \hat{\sigma}_{i+1} \]

Then

\[|E_i - E_{i+1}| \gg J \quad \text{Implies} \quad \hat{H}_{\text{int}} \approx J \sum \hat{\sigma}_i^Z \hat{\sigma}_{i+1}^Z \]
Case A: When Universal Local Gates Are Possible:

Positions of Qubits & Barrier Spins

\[\varepsilon_0 \ A \ \varepsilon_1 \ A \ \varepsilon_2 \ A \ \varepsilon_3 \ A \ \varepsilon_4 \]

\[\downarrow \textrm{W} \ \uparrow \textrm{X} \ \downarrow \textrm{Y} \ \uparrow \textrm{Z} \]

\[\downarrow \ A \ \textrm{barrier spin} \]

\[\uparrow \textrm{X} \ A \ \textrm{qubit} \]

\(\varepsilon_i \) are variable energies, set to \(B \) in the passive state when single qubit gates are performed.

The Ising interaction on each qubit is then completely cancelled at all times. Note: Both barrier spins could be in the same state (which is easier to initialize, with periodic cancellation of Ising effects.)
Case A: When Universal Local Gates Are Possible:

\[
\hat{H} = (A + J)(\hat{\sigma}_2^z + \hat{\sigma}_4^z) + \varepsilon(t)\hat{\sigma}_3 + J(\hat{\sigma}_2 \cdot \hat{\sigma}_3 + \hat{\sigma}_3 \cdot \hat{\sigma}_4)
\]

For a Gate between X & Y, \(\varepsilon(t) = B \)

is changed (fast) to \(\varepsilon(t) = A + J \)

Then 3 becomes resonant with 2 & 4 (2,3,4 become a small Heisenberg chain).
At time $t_r = \hbar/(6J)$

2 & 4 disentangle from 3.

An entangling gate between X and Y!

J. L. Dodd et. al., PRA 65, 040301 (2002).
Case B: When Only Zeeman Energy Tuning is Possible Locally:

Method for one qubit gates:

(a) $|0\rangle_L = |\downarrow\uparrow\rangle$ \hspace{1cm} $|1\rangle_L = |\uparrow\downarrow\rangle$

\hspace{1cm} $\varepsilon = B$ is passive

C \hspace{0.5cm} A \hspace{0.5cm} ε_1 \hspace{0.5cm} C \hspace{0.5cm} A \hspace{0.5cm} ε_2 \hspace{0.5cm} C \hspace{0.5cm} A \hspace{0.5cm} ε_3 \hspace{0.5cm} C

(b) $|1\rangle$

$|0\rangle + |1\rangle$ \hspace{1cm} $|0\rangle + i|1\rangle$

\hspace{1cm} $\sqrt{2}$ \hspace{1cm} $\sqrt{2}$

(i) $\varepsilon = A$ \hspace{1cm} (ii) $\varepsilon = A + \delta$

$\theta = \text{ArcTan}(\frac{4J}{\delta})$
Case B: When Only Zeeman Energy Tuning is Possible Locally:
Method for two qubit gates
Global control quantum computation schemes of Lloyd & Benjamin

Case B: When No Local Ability is Present:

Control Switch of Six Settings

Control Through the Strength of a Single Field
Quantum Communication through a Spin Chain

Avoids *interfacing* solid state systems with optics for the purpose of short-distance communication:
Definition of Spin-Chains:

(A) 1D array of spins

(B) “Always On” (untunable) interactions

Makes it much easier to fabricate such systems with qubit arrays (especially in solid state) than to perform arbitrary quantum computations.
First consider arbitrary graphs with ferromanetic Heisenberg interactions

\[H = \sum_{<i,j>} J_{ij} \sigma_i \cdot \sigma_j \]

Initialized in the ground state

\[|0\rangle = |000...00\rangle, |0\rangle \equiv \]

with \[H_B = -B \sum_j \sigma_{j,z} \]
At $t = 0$,

$$|\Psi (0)\rangle = |00...0\rangle (\cos \frac{\theta}{2} |0\rangle + e^{i\phi} \sin \frac{\theta}{2} |1\rangle) |00...0\rangle$$

For $1, 2, ..., s-1$; s; $s+1, ..., N$
Time evolution of the spin-graph:

\[|\Psi(t)\rangle = \cos \frac{\theta}{2} |O\rangle + e^{i\phi} \sin \frac{\theta}{2} \sum_{j=1}^{N} e^{-2iBt} f_{j,s}^N(t) |j\rangle \]

where, \(|O\rangle = |00...0\rangle \), \(|j\rangle = |00..010..0\rangle \)

and \(f_{j,s}^N(t) = \langle j | e^{-iHt} | s \rangle \)

is the transition amplitude of an excitation from the \(s \) th to the \(j \) th spin due to \(H \).

Note that only the ground & N one-excitation states of the graph are involved (because \(H \) does not create excitations, only propagates excitations).
\[\rho_r(t) = P(t) |\psi_{\text{out}}(t)\rangle \langle \psi_{\text{out}}(t) | _r + (1 - P(t)) |0\rangle \langle 0 | _r \]

where, \[P(t) = \cos^2 \frac{\theta}{2} + |f_{r,s}^N(t)|^2 \sin^2 \frac{\theta}{2} , \]

\[|\psi_{\text{out}}(t)\rangle = \frac{1}{\sqrt{P(t)}} (\cos \frac{\theta}{2} |0\rangle _r + e^{i\phi} \sin \frac{\theta}{2} e^{2iBt} f_{r,s}^N(t) |1\rangle _r) \]

B should be chosen so that \[f_{r,s}^N(t) \Rightarrow |f_{r,s}^N(t)| \]
The graph of Heisenberg interacting spins behaves as an amplitude damping quantum channel:

\[
M_0 = \begin{pmatrix}
1 & 0 \\
0 & |f_{r,s}^N(t)|
\end{pmatrix}, \quad M_1 = \begin{pmatrix}
0 & \sqrt{1 - |f_{r,s}^N(t)|^2} \\
0 & 0
\end{pmatrix}
\]

Fidelity averaged over the Bloch Sphere:

\[
\langle F \rangle = \frac{1}{4\pi} \int \langle \psi_{\text{in}} \left| \rho_{\text{out}}(t) \right| \psi_{\text{in}} \rangle = \frac{1}{2} + \frac{1}{3} |f_{r,s}^N(t)| + \frac{1}{6} |f_{r,s}^N(t)|^2
\]

Entanglement (Concurrence) for input of one half of a \(\left| \Psi^{(+)} \right> \)

\[
E_C = \left| f_{r,s}^N(t) \right|
\]

Exceptionally simple formulae in terms of a single transition amplitude
We will consider two cases:

A linear chain with communicating parties at opposite ends (most natural and readily implementable case):

\[H = -\frac{J}{2} \sum_{j=1}^{N-1} \sigma_j \cdot \sigma_{j+1} \]

A closed loop with the communicating parties at diametrically opposite ends (to compare):

\[H = -\frac{J}{2} \sum_{j=1}^{N-1} \sigma_j \cdot \sigma_{j+1} - \frac{J}{2} \sigma_N \cdot \sigma_1 \]
Eigenstates in the one excitation sector:

(A) Linear (open chain) case: (A Quantum Cosine Trans.)

\[|\tilde{m}\rangle = a_m \sum_{j=1}^{N} \cos \left(\frac{\pi}{2N} (m - 1)(2j - 1) \right) |j\rangle \]

for \(m = 1, \ldots, N \) with \(a_1 = \sqrt{\frac{1}{N}} \) and \(a_{m>1} = \sqrt{\frac{2}{N}} \)

(B) Closed chain case: (A Quantum Fourier Trans.)

\[|\tilde{m}\rangle = \sqrt{\frac{1}{N}} \sum_{j=1}^{N} e^{i \frac{2\pi}{N} (m - 1) j} |j\rangle \]

for \(m = 1, \ldots, N \)
Transition amplitudes in terms of readily computable transforms:

(A) Linear (open chain) case:

\[|f^N_{r,s}| = |DCT_s(N, v_m(r, t))| \]

where

\[v_m(r, t) = a_m \cos \left(\frac{\pi (m-1)}{2N} (2r-1) \right) e^{i2Jt \cos \left(\frac{\pi (m-1)}{N} \right)} \]

\[a_1 = \sqrt{\frac{1}{N}} \quad \text{and} \quad a_{m>1} = \sqrt{\frac{2}{N}} \]

(B) Closed chain case:

\[|f^N_{r,s}| = |DFT_{r-s}(N, v_m(t))| \]

where

\[v_m(t) = e^{i2Jt \cos \left(\frac{2\pi (m-1)}{N} \right)} \]
Fidelity, Entanglement

Log of Scaled time
Alternative formulas in terms of Bessel functions:

Open chain:
\[
\left| f_{N,1}^N \right| = 2 \sqrt{\left(\sum_{k=0}^{\infty} (-1)^{Nk} J_{N(k+1)} (2Jt) \right)^2 + \left(\sum_{k=0}^{\infty} (-1)^{Nk} J'_{N(k+1)} (2Jt) \right)^2} \approx 2 \left| J_N (2Jt) \right|
\]
at the maximum near \(2Jt=N\)

Closed chain:
\[
\left| f_{N/2,1}^N \right| = 2 \left| \sum_{k=0}^{\infty} (-1)^{(N/2)k} J_{(N/2)(2k+1)} (2Jt) \right| \approx 2 \left| J_{N/2} (2Jt) \right|
\]
at the maximum near \(2Jt=N/2\)

1. Closed chain \(2N \leq \) Open chain \(N\)

2. Can find high fidelity transfer at \(2Jt=N\)

\[
N = 10^3 \Rightarrow E_C (2Jt = 1005) = 0.13
\]
\[
N = 10^4 \Rightarrow E_C (2Jt = 10017) = 0.06
\]
Possible Future Work

Q. Comm part:

1. Sending higher D systems (Ex: 4 state systems by using up to 2 spin excitations --- with Korepin).
2. Study Graphs which improve comm. fidelity (suggested by Preskill)
3. Direct qubit comm. (without distillation) over arbitrary distances by using spin-1 chain (--- with Thapliyal).

Q. Compu part:

2D extensions, extensions to clusters replacing single qubits etc. --- for greater fault tolerance and robustness.