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1D Bulk Magnets are Natural Spin Chains (Examples):

Cu 
(spin 

½ 
sites)

Isotropic Heisenberg Antiferromagnet:

P. R. Hammar et. al., PRB 59, 1008 (1999).



Quantum computation using a 1D magnet

Quantum computation
by applying a time varying
and inhomogeneous magnetic
field to a spin chain.



Heisenberg Chain to Ising Chain Conversion:

Heisenberg

Ising

A, B = Zeeman Energies,
|A-B| >> J

If

Where,

Then
Implies



Positions of Qubits & Barrier Spins

A barrier spin A qubit

Case A: When Universal Local Gates Are Possible:

The Ising interaction on each qubit is then completely cancelled at
all times.  Note: Both barrier spins could be in the same state (which
is easier to initialize, with periodic cancellation of Ising effects.

iε are variable energies, set to B in the passive state
when single qubit gates are performed.



Case A: When Universal Local Gates Are Possible:
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For a Gate between X & Y,

is changed (fast) to

Then 3 becomes resonant with 2 & 4 (2,3,4 become
a small Heisenberg chain).



Case A (Contd.)

At time

1     2      3     4     5

2 & 4 disentangle from 3.

An entangling gate between X and Y !

Use techniques of: M. J. Bremner et. al., quant-ph/0207072.
J. L. Dodd et. al., PRA 65, 040301 (2002).



Case B: When Only Zeeman Energy Tuning is Possible Locally:

Method for one qubit gates:



Method for two qubit gates
Case B: When Only Zeeman Energy Tuning is Possible Locally:



Global control quantum computation schemes of Lloyd & Benjamin
S. Lloyd, Science 261, 1569 (1993); S. C. Benjamin, PRL 88, 017904 (2002).

One Qubit Gates Two Qubit Gates



Case B: When No Local Ability is Present:

Control Switch of 
Six Settings

Control Through the 
Strength of a Single Field



Alice Bob

BobAlice

Quantum Communication through a Spin Chain

Avoids interfacing solid state systems with optics for the purpose of 
short-distance communication:

Quantum 
Computer

Quantum 
Computer



Definition of Spin-Chains:

(B)  “Always On” (untunable) interactions

(A) 1D array of spins

Makes it much easier to fabricate such systems with
qubit arrays (especially in solid state) than  to perform 
arbitrary quantum computations.
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First consider arbitrary graphs with ferromanetic
Heisenberg interactions
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Time evolution of the spin-graph:
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where, 0 = 00 0... j = 00 010 0.. ..,

j th spin
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is the transition amplitude of an excitation from the s th
to the j th spin due to H.

Note that only the ground & N one-excitation states of 
the graph are invloved (because H does not create
excitations, only propagates excitations).
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The graph of Heisenberg interacting spins behaves as 
an amplitude damping quantum channel:
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Fidelity averaged over the Bloch Sphere:
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Entanglement (Concurrence) for input of one half of a Ψ ( )+
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Exceptionally simple formulae in terms of a single
transition amplitude



We will consider two cases:
A linear chain with communicating parties at opposite ends
(most natural and readily implementable case):

1 N
Alice Bob

A closed loop with the communicating parties at diametrically 
opposite ends (to compare):
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Eigenstates in the one excitation sector:
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(A) Linear (open chain) case:

for with and

(B) Closed chain case:
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(A Quantum Cosine Trans.)

(A Quantum Fourier Trans.)
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Transition amplitudes in terms of readily computable 
transforms:
(A) Linear (open chain) case:

where

(B) Closed chain case:
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Fidelity, Entanglement

Log of Scaled time



Alternative formulas in terms of Bessel functions:
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at the maximum near 2Jt=N/2

Open chain:

Closed chain:
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Possible Future Work

1.Sending higher D systems (Ex: 4 state systems by using up to  2 
spin excitations --- with Korepin).

Q.Comm part:

2. Study Graphs which improve comm. fidelity (suggested by Preskill)

3. Direct qubit comm. (without distillation) over arbitrary distances 
by using spin-1 chain (--- with Thapliyal).

4. Can measurements on the chain improve transfer? (suggested by
Verstraete).

Q.Compu part:

2D extensions,   extensions to clusters replacing single qubits etc.
--- for greater fault tolerance and robustness.


