Quantum Communication \& Computation $\mathcal{U l}$ sing S pin Cfains

Sougato Bose

Institute for Quantum Information, Caltech \& UCL, London

Quantum Computation Part:
S. C. Benjamin \& S. Bose, quant-ph/0210157 (to appear in PRL)

Quantum Communic ation Part:
S. Bose, quant-ph/0212041

1D Bulk Magnets are Natural Spin Chains (Examples):

Isotropic Heisenberg Antiferromagnet:

$$
\mathcal{H}=\sum_{i}\left[J \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}-g \mu_{B} \mathbf{H} \cdot \mathbf{S}_{i}\right]
$$

P. R. Hammar et. al., PRB 59, 1008 (1999).

Quantum computation using a 1D magnet

11く1!1ノ1! 1 1!

Quantum computation by applying a time varying and infomogeneous magne tic field to a spincrain.

Heisenberg Chain to Ising Chain Conversion:

$\mathrm{A}, \mathrm{B}=$ Zeeman Energies, $|A-B| \gg J$
(

$$
\text { If } \quad \hat{H}=\hat{H}_{\text {Zeeman }}+\hat{H}_{\mathrm{int}}
$$

Where, $\quad \hat{H}_{\text {Zeeman }}=\sum_{i=1}^{N} E_{i}(t) \hat{\sigma}_{i}^{Z}, \quad \hat{H}_{\mathrm{int}}=J \sum_{i=1}^{N-1} \underline{\hat{\sigma}}_{i} \cdot \underline{\hat{\sigma}}_{i+1}$
Then

$$
\left|E_{i}-E_{i+1}\right| \gg J \quad \text { Implies } \quad \hat{H}_{\mathrm{int}} \approx J \sum \hat{\sigma}_{i}^{Z} \hat{\sigma}_{i+1}^{Z}
$$

Case A: When Universal Local Gates Are Possible:

Positions of Qubits \& Barrier Spins

\mathcal{E}_{i} are variable energies, set to \mathbf{B} in the passive state when single qubit gates are performed.

The Ising interaction on each qubit is then completely cancelled at all times. Note: Both Garrier spins could be in the same state (which is easier to initialize, with periodic cancellation of Ising effects.

Case A: When Universal Local Gates Are Possible:

For a Gate between X \& $Y, \varepsilon(t)=B$

$$
\text { is changed (fast) to } \varepsilon(t)=A+J
$$

Then 3 becomes resonant with 2 \& $4(2,3,4$ become a small He isenberg chain).

Case A (Contd.)

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

$\hat{G}=\left(\begin{array}{ccccc}1 & 0 & 0 & 0 \\ 0 & W & i \sqrt{3} W & 0 \\ 0 & i \sqrt{3} W & W & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ where $W=\frac{1}{2} e^{i \pi / 3}$
An entangling gate between X and \mathcal{Y} !

Use techniques of: $\mathcal{M} . J . \mathcal{B r e m n e r} e t . a l ., q u a n t-p h / 0207072$. J.L. Dod et. al., PRA 65, 040301 (2002).

Case B: When Only Zeeman Energy Tuning is Possible Locally: Method for one quit gates:

CA $\quad \varepsilon_{1}$ C $A \varepsilon_{2}$ C A ε_{3} C

Case B: When Only Zeeman Energy Tuning is Possible Locally: Method for two qubit gates

Global control quantum computation schemes of Lloyd \& Benjamin S. Lloyd, Science 261, 1569 (1993); S. C. Benjamin, PRL 88, 017904 (2002).

Case B: When No Local Ability is Present:

Controls witch of Six Settings

Control Through the Strength of a Single Field

Quantum Communication through a Spin Chain

Avoids interfacing solid state systems with optics for the purpose of short-distance communication:

Definition of Spin-Crains:

$$
\text { (A) } 1 \mathcal{D} \text { array of spins }
$$

(B) "Always On" (untunable) interactions

Makes it mucheasier to fabricate such systems with qubit arrays (especially in solid state) than to perform arbitrary quantum computations.

First consider arbitrary graphs with ferromane tic $\mathcal{H e}$ isenberg interactions

$$
H=\sum_{\chi_{i}, j} J_{j} \sigma_{i} \sigma_{i} \cdot \sigma_{j}
$$

Initialized in the ground state

$$
|0\rangle=|000 \ldots . .00\rangle,|0\rangle \equiv \phi
$$

$$
\text { with } \quad H_{B}=-B \sum_{j} \sigma_{j, z}
$$

At $t=0$,

$$
|\Psi(0)\rangle=\underbrace{00 . .0\rangle}_{1,2, \ldots, s-1}(\underbrace{\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle}_{s}) \underbrace{00 . .0\rangle}_{s+1, \ldots, \mathcal{N}}
$$

Time evolution of the spin-grapf:
$|\Psi(t)\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2} \sum_{j=1}^{N} e^{-2 i B t} f_{j, s}^{N}(t)|j\rangle$
where, $|0\rangle=|00 \ldots . .0\rangle, \quad|j\rangle=|00 . .010 . .0\rangle$ and $\quad f_{j, s}^{N}(t)=\langle j| e^{-i H t}|s\rangle$
is the transition amplitude of an excitation from the sth to the j th spindue to H.
\mathfrak{N} ote that only the ground $\mathfrak{\sim N}$ one-excitation states of the graph are invloved (because H does not create excitations, only propagates excitations).

$$
\rho_{r}(t)=P(t)\left|\psi_{\text {out }}(t)\right\rangle\left\langle\left.\psi_{\text {out }}(t)\right|_{r}+(1-P(t)) \mid 0\right\rangle\left\langle\left. 0\right|_{r}\right.
$$

where, $P(t)=\cos ^{2} \frac{\theta}{2}+\left|f_{r, s}^{N}(t)\right|^{2} \sin ^{2} \frac{\theta}{2}$,

$$
\left|\Psi_{\text {out }}(t)\right\rangle=\frac{1}{\sqrt{P(t)}}(\cos \frac{\theta}{2}|0\rangle_{r}+e^{i \phi} \sin \frac{\theta}{2} \underbrace{e^{2 i B t} f_{r, s}^{N}(t)}|1\rangle_{r})
$$

$$
\text { B should be chosen so that } f_{r, s}^{N}(t) \Rightarrow\left|f_{T, s}^{N}(t)\right|
$$

The graph of Heisenberg interacting spins behaves as an amplitude damping quantum channel:

$$
M_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & \left|f_{r, s}^{N}(t)\right|
\end{array}\right), M_{1}=\left(\begin{array}{cc}
0 & \sqrt{1-\left|f_{r, s}^{N}(t)\right|^{2}} \\
0 & 0
\end{array}\right)
$$

Fidelity averaged over the Bloch Sphere:

$$
\langle F\rangle=\frac{1}{4 \pi} \int\left\langle\psi_{\text {in }}\right| \rho_{\text {out }}(t)\left|\psi_{\text {in }}\right\rangle=\frac{1}{2}+\frac{1}{3}\left|f_{r, s}^{\mathcal{N}}(t)\right|+\frac{1}{6}\left|f_{r, s}^{\mathcal{N}}(t)\right|^{2}
$$

Entanglement (Concurrence) for input of one half of a $\left|\Psi^{(+)}\right\rangle$

$$
E_{C}=\left|f_{r, s}^{\mathcal{N}}(t)\right|
$$

Exceptionally simple formulae in terms of a single transition amplitude

We will consider two cases:
\mathcal{A} line ar chain witf communicating parties at opposite ends (most natural and readily implementable case):

\mathcal{A} closed loop with the communicating parties at diametrically opposite ends (to compare):

Alice

Eigenstates in the one excitation sector:
(A) Linear (open chain) case: (\mathcal{A} Quantum Cosine Trans.)

$$
|\tilde{m}\rangle=a_{m} \sum_{j=1}^{N} \cos \left[\frac{\pi}{2 N}(m-1)(2 j-1)\right]|j\rangle
$$

for $m=1, \ldots, N \quad$ with $\quad a_{1}=\sqrt{\frac{1}{N}} \quad$ and $\quad a_{m>1}=\sqrt{\frac{2}{N}}$
(B) Closed chain case: (\mathcal{A} Quantum Fourier \mathcal{T} fans.)

$$
|\tilde{m}\rangle=\sqrt{\frac{1}{N}} \sum_{j=1}^{N} e^{i \frac{2 \pi}{N}(m-1) j}|j\rangle
$$

$$
\text { for } m=1, \ldots, N
$$

Transition amplitudes in terms of readily computable transforms:
(A) Linear (open chain) case:

$$
\left|f_{r_{r, s}}^{f_{x}}=\right| D C T_{s}\left(N, v_{m}(r, t) \mid\right.
$$

$$
\begin{array}{r}
\text { where } \\
v_{m}(r, t)=a_{m} \cos \left[\frac{\pi(m-1)}{2 N}(2 r-1)\right] e^{i 2 J t \cos \left[\frac{\pi(m-1)}{N}\right]} \\
a_{1}=\sqrt{\frac{1}{N}} \text { and } a_{m>1}=\sqrt{\frac{2}{N}}
\end{array}
$$

(B) Closed chain case:

$$
\left|f_{r, s}^{\vartheta v}\right|=\left|D F T_{r \cdot s}\left(N, v_{m}(t)\right)\right|
$$

$$
\text { where } \quad v_{m}(t)=e^{l 2 J t \cos \left[\frac{N}{N}\right]}
$$

Alternative formulas in terms of Besselfunctions:
Openchain:

$$
\begin{aligned}
& n \text { chain: } \\
& \left|f_{N, 1}^{N}\right|=2 \sqrt{\left(\sum_{k=0}^{\infty}(-1)^{N k} J_{N(k+1)}(2 J t)\right)^{2}+\left(\sum_{k=0}^{\infty}(-1)^{N k} J_{N(k+1)}^{\prime}(2 J t)\right)^{2}} .
\end{aligned}
$$

$$
\approx 2\left|J_{N}(2 J t)\right| \text { at the maximum near } 2 \mathrm{~g} t=\mathcal{N}
$$

Closed chain $\left|f_{N / 2,1}^{N}\right|=2\left|\sum_{k=0}^{\infty}(-1)^{(N / 2) k} J_{(N / 2)(2 k+1)}(2 J t)\right|$

$$
\approx 2\left|J_{N / 2}(2 J t)\right| \text { at the maximum near } 2 \mathrm{~g} t=\mathcal{N} / 2
$$

1. Closed chain $2 \mathfrak{N} \leq$ Openchain \mathcal{N}

2. Can find high fidelity transfer at $2 \mathrm{~g} t=\mathfrak{N}$

$$
\begin{aligned}
& N=10^{3} \Rightarrow E_{C}(2 J t=1005)=0.13 \\
& N=10^{4} \Rightarrow E_{C}(2 J t=10017)=0.06
\end{aligned}
$$

Possible Future Work
Q.Comm part:
1.Sending higher D systems (Ex: 4 state systems by using up to 2 spin excitations --- with Korepin).
2. Study Graphs which improve comm. fidelity (suggested by Preskill)
3. Direct qubit comm. (without distillation) over arbitrary distances by using spin- 1 chain (--- with Thapliyal).
4. Can measurements on the chain improve transfer? (suggested by Verstraete).
Q.Compu part:

2D extensions, extensions to clusters replacing single qubits etc.
--- for greater fault tolerance and robustness.

