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Multiparticle entanglement

1. Shareability: (wWootters/Schumacher)

If A is very entangled with B, then it is weakly entangled with C.

A
° |LIJ>ABC :|¢_>AB |O>c
Co oB To increase the entanglement AC one has to decreases that of AB.

| W) xac = 001)+ | 010)+ |100)
(Dir, Vidal and Cirac)

One may consider more particles and different configurations;
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|1. Entanglement in quantum statistical models: (Nielsen, Fazio, Vedral, Vidal, Korepin)
1

N ; H:UZn:AhDAHf- t) B,

Entanglement between two particles:
3 E (U, T)=E[Tr, ) (e™)]

Which is the Hamiltonian for which this entanglement is maximal (at T=0)?



This talk: Gaussian states
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e Consider a undirected simple graph with N vertices. 010001
1 01000
: . =1 if k| are connected (010000
Adjacency matrix A: A . Aloo1010
A , =0 otherwise A ——
| ) 1 00010

Symmetry of the graph: automorphism group Rotations
G={g/A=gAg} OS, + reflections

e Consider two points, kI, such that for some All pairs

gUG, gkr landg(lF k

We determine the Gaussian state, invariant under G, which maximizes EoF for (k1)
W gaussian with T, | W) =| W), suchthat E. | Tr,,,, (|WXW]) | ismaximal




e (Gaussian states:

A B C
A A p is Gaussian if it can be written as:
dim(H ) = o p = ke Q*n R
[X5, Rl =1 Q=0 is a polynomial of degree 2
H=0H,

* Optimal state: 1. Build a Hamiltonian

1
6 , H :“;GTQ[(xk—m%(pk +p)* T,
3 2. Determine ground state mmp W
3. Determine ground state energy E.,.

mE. = f(E)

Everything can be easily determined starting from the Adjacency matrix A.

e Extensions:

- General group (including undirected graphs, etc) if Index(k, k) = Index(k,I) 9 2
=) add 90G, gk | andg(lF k :

- Qubits @



Examples

1. Platonic solids:

AawWe o

Platonic Solid EoF x 100 N adjacent | N nodes
Tetrahedron 19.74 3 4
Cube 1974 3 8
Dodecahedron 1112 3 20
Octahedron 10.75 4 6
Icosahedron 5.37 5 12

Tendencies:

e E decreases with the number of adjacent nodes.
e E decreases with the total number of nodes.
e E is suppressed in loops with an odd number of nodes.



I1. Infinite lattices:

Lattice EoF x 100 | N adjacent
Hexagonal (2d) 10.61 3 Tendencies:
Square (2d) 6.31 4 e E decreases with the number of adjacent nodes.
Trigonal (2d) 2.69 6
Cubic (3d) 2.62 6
1. FinitellattiCESZ Nearest neighbors Separation
(0)0) (00]
N 2 4 4
3 — 0.3 ebits

23 45 6 N 234 N2 D



Key points of the derivation

1. Entanglement of formation of symmetric Gaussian states:

(Giedke, Wolf, Kriiger, Werner and Cirac)

A 5 n 0 k O
. . O n 0 -k
'Lt Covariant matrix y= T Op
Gaussian x
0 -k, 0

Symmetric Gaussian states; m=n
E-(p)=1(8)

with A=./(n-k)(n-k,) and f(4) amonotonicfunction

2. Express it in a linear form:

s>0 S

A(p) =inf Tr{y(sx 1 Pﬂ



3. Optimization problem:

: 1
A ; = sup inf T{Vi,j (SX +g Pﬂ with W invariant under G.

Wy s>0

4. Use symmetry.

. 1
A, ; =supinf T{F(sHX +—Hpﬂ

r s>0 S

where H, =) T (X O0)T,

gllG

5. Algebra + properties of covariant matrices:

A =inf(WIH | W)

where H is a Hamiltonian of harmonic osc. which are coupled according to the graph.



2. Limits on gates for trapped ions

Quantum information processing with trapped ions:

(Y W - Internal states manipulated with
Wo o0 gain lasers.
LTI f f - Two-qubit gates by exciting
motional states.
- Difficult to scale-up.

Scalable proposals

(J.I. Cirac and P. Zoller, Nature 2000) (Wineland and col, Nature 2001)



Two-qubit gates

e Most of the errors occur during two-qubit quantum gates.
* \We would like to design the most efficient quantum gates.

e One just has consider two ions in a trap.

‘\/

vV

Current proposals: limitations

(Molmer and Sorensen, Plenio, Monroe, Milburn and James, Leibfried and Wineland, Cirac and Zoller....)

Time: VT >1 (tipically, of the order of 100 to achieve F=0.99).

Addressability: Different lasers acting on different ions.

Low temperatures; NvN+1<1



New scheme based on a different concept

* No time limitation by the trap frequency.
e Insensitive to temperture:

* No addressability:

|dea:

e Use on-resonant lasers to kick the atoms mmp No spectroscopic limitations.
® Laser pulses must be short, and come from two different directions:

(as in Poyatos, Cirac, and Zoller, 97)

Limitation is laser control



Basic principle (with one ion):

(1) Use lasers to kick both ions.

e\,

Kick depends on the internal state of the ion and laser direction.

| 9) | mot) M - | g)e** | mot)
|e) | mot) M - |e)e™™* | mot)

(1) Free evolution in the harmonic trap.
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If an e =0 then U=¢&%*: 01



s e V(t, +1,)

v <

v, vt +t,) @
e\Wereturn to theinitial state. o Can be made independent of the initial
coherent state.

* The wavefunction acquires a phase. o The phase is also independent.

(p =
N . .
if >.ne*=0 then|a) - € ae™)
k=1
The angle ¢ depends on the path.

The path depends on the initial state. I Quantum gate.



With two 1ons

(
N 5
> ne®k =0
- "> "> / wmmp Conditions {5 | ) U =% 1
ne’ =0
- ) ; . Control-phase
Two modes ‘ gate

e For any chosen time T, it is always possible to find a sequence of pulses.
There is not limitation by the trap frequency!

e Completely independent of the motional state (no LDL restriction).

e No addressability.
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* The number of required pulses increases if the time decreases. N_ ~ T
vV

e Limitations:
- Length of the laser pulses.
- Laser stability.



Conclusions

Entanglement of Gaussian states

- Solved the problem of shareability for
O @ arbitrary graphs.

————— - Connection with quantum statistics:
% ground state of a symmetric Hamiltonian.

New concepts for quantum gates with ions

-No limitation by trap frequency.

'v' - New scheme:;

e New concept (resonant interaction).
® Fast (not limited by trap frequency).

® Robust (arbitrary temperatures).
e Simple (no addressability).



