Physical limitsfor quantumgates with ions

J.J. Gardia-RipdI
 P.Zdler (I nnstorudk)

Gaussian entang ement andsymmetry graphs

M. Wdf
F. Verstraete

Max-Plandk Institut für Quantenqtik

Stany Brook, 29 M ay 2003

Multipartideentangement

1 Shareability: (Nodters/Schumader)

If A is very entang ed with B, then it is weakly entang ed with C.

A

$$
|\Psi\rangle_{A B C}=\left|\varphi^{-}\right\rangle_{A B}|0\rangle_{C}
$$

To increase theentang ement $A C$ onehas to decreases that of $A B$.

$$
|\Psi\rangle_{A B C}=|001\rangle+|010\rangle+|100\rangle
$$

(Dür, Vidal andCirac)
Onemay cansider more partides and dfferent canfigurations.

Entanglement nearest neighbors

Entangement every partner

Oneand
therest
II. Entangement in quantumstatistical modls: (Nidsen, Fazio, Vedral, Vidal, Korepin)

$$
H=U \sum_{n} A_{n} \otimes A_{n+1}+t \sum B_{n}
$$

Entang ement between two partides:

$$
E_{i, j}(t, U, T)=E_{F}\left[T_{(i, j)}\left(e^{-H / T}\right)\right]
$$

Which is theHamiltonian for which this entang ement is maximal (at $T=0$)?

Thistal k Gaussian states

- Consider a undretedsimplegraph with N vetices

Adacency matrix A: $\left\{\begin{array}{l}A_{k, l}=1 \text { if } \mathrm{k}, \mathrm{l} \text { areconnected } \\ A_{k, l}=0 \text { therwise }\end{array}\right.$
Symmery of thegraph automorphismgroup

$$
G=\left\{g / A=g A g^{-1}\right\} \subseteq S_{N}
$$

- Consider two paints, k,l, such that for some
$A=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Rotations

+ reflections

$$
g \in G, g(k)=l \text { and } g(l)=k
$$

WedterminetheGaussian state invariant undar G, which maximizes EoF for (k,l) Ψ gaussian with $T_{g}|\Psi\rangle=|\Psi\rangle$, such that $E_{F}\left[\operatorname{Tr}_{(k, l)}(|\Psi\rangle\langle\Psi|)\right]$ is maximal

- Gaussian states

$$
A \quad B \quad C
$$

$\operatorname{dim}\left(H_{n}\right)=\infty$

$$
\begin{aligned}
& {\left[X_{n}, P_{n}\right]=i} \\
& H=\otimes_{n} H_{n}
\end{aligned}
$$

ρ is Gaussian if it can bewritten as:

$$
\rho=k e^{-Q\left(X_{n}, P_{n}\right)}
$$

$Q \geq 0$ is a pdynamial of degree2

- Optimal state

1 Builda Hamiltonian

$$
\begin{aligned}
& \qquad H=\sum_{g \in G} T_{g}\left[\left(x_{k}-x_{l}\right)^{2}+\left(p_{k}+p_{l}\right)^{2}\right] T_{g}^{\dagger} \\
& \text { 2. Determinegroundstate } \longrightarrow \Psi \\
& \text { 3. Determinegroundstateenergy } E_{0} \text {. } \\
& \rightarrow E_{F}=f\left(E_{0}\right)
\end{aligned}
$$

Everything can beeasily dterminedstartingframtheAdacency matrix A.

- Extensions.
- General group (induding undreted graphs, ec) if $\operatorname{Index}(k, k)=\operatorname{Index}(k, l)$ \Rightarrow add $g \in G, g(k)=l$ and $g(l)=k$
- Qubits

Examples

1 Platonic soliok:

Platanic Solid	EoF $\times 100$	N adjacent	N nodes
Terahecton	19.74	3	4
Cube	19.74	3	8
Dockcahecton	1172	3	20
Octahecton	10.75	4	6
Icosahecton	537	5	12

Tendandies:

- E deremses with thenumber of adacent nodes
- E dereases with thetctal number of nodes
- E is suppressed in loops with an odd number of nodes
II. Infinitelattices:

Lattice	EoF $\times 100$	N adacent
Hexagonal (2d)	10.61	3
Square(2d)	6.31	4
Trigonal (2d)	2.69	6
Cubic (30)	2.62	6

Tendandies

- E derreases with thenumber of adacent nodes
III. Finitelattices

Nearest neighbors

Separation

Key points of thedrivation

1 Entangement of formation of symmetric Gaussian states:
(Giecke, Wdf, Krüger, Werner and Cirac)
A B
Gaussian
Covariant matrix
Cor $\quad\left(\begin{array}{cccc}n & 0 & k_{x} & 0 \\ 0 & n & 0 & -k_{p} \\ k_{x} & 0 & m & 0 \\ 0 & -k_{p} & 0 & m\end{array}\right)$

Symmetric Gaussian states $m=n$

$$
E_{F}(\rho)=f(\Delta)
$$

with $\Delta=\sqrt{\left(n-k_{x}\right)\left(n-k_{p}\right)}$ and $f(\Delta)$ a monotonic function.
2. Express it in a linear form

$$
\Delta(\rho)=\inf _{s>0} \operatorname{Tr}\left[\gamma\left(s X+\frac{1}{s} P\right)\right]
$$

$$
\Delta_{i, j}=\sup _{\Psi \rightarrow \gamma_{i, j}} \inf _{s>0} \operatorname{Tr}\left[\gamma_{i, j}\left(s X+\frac{1}{s} P\right)\right] \quad \text { with } \Psi \text { invariant undar } G .
$$

4. Usesymmery:

$$
\begin{aligned}
& \Delta_{i, j}= \sup _{\Gamma} \inf _{s>0} \operatorname{Tr}\left[\Gamma\left(s H_{X}+\frac{1}{s} H_{P}\right)\right] \\
& \text { where } H_{X}=\sum_{g \in G} T_{g}(X \oplus 0) T_{g}^{\dagger}
\end{aligned}
$$

5 Algadra + propeties of covariant matrices.

$$
\Delta_{i, j}=\inf _{\Psi}\langle\Psi| H|\Psi\rangle
$$

where H is a Hamiltonian of harmanic OSC which are coupledaccordng to thegraph

2. Limits an gates for trappedians

Quantuminformation processing with trappedions:

- Internal states manipulated with
lasers
- Two quit gates by exaiting
motional states
- Difficult to scal e up.

Scal ald eproposals

(.1. Cirac andP. Zdler, Nature2000)

(Winelandandcd, Nature2001)

Two-qubit gates

- M ost of the errors ocur duringtwo qubit quantumgates.
- Wewouldliketo design themost efficient quantumgates.
- Onejust has considar two ions in a trap.

Current proposals: limitations

(M dmer and Sorensen, Plenio, Manroe, Milburn andJ ames, LeibfriedandWindand Cirac andZaller....)
Time $v T \gg 1$ (tipically, of theorder of 100 toadieveF=0.99).

Adbressability: Different lasers adingon different ians.
Low temperatures: $\quad \eta \sqrt{N+1} \ll 1$

New schemebased on a dfferent concept

- Notimelimitation by thetrap frequency.
- Insensitivetotempeture
- No adbressability:

Idæ:

(as in Poyatos, Cirac, andZdler, 97)

- Useon-resonant laserstokidk theatoms $\|$ Nospectroscopiclimitations.
- Laser pulses must beshort, and cameframtwo dfferent dretions.

Limitation is laser contrd

Basic prindiple(with oneion):

(i) Uselaserstokick both ions.

Kidk depends on theinternal stateof theion and laser drection.
$|g\rangle \mid$ mot $\rangle \xrightarrow{(1,2)}|g\rangle e^{2 i k_{1}} \mid$ mot \rangle
$|e\rangle \mid$ mot $\rangle \xrightarrow{(1,2)}|e\rangle e^{-2 i k_{1}} \mid$ mot \rangle
(ii) Freeevdution in theharmanic trap.

- We return to the initial state.
- The wavefunction acquires a phase.

$$
\phi=A
$$

$$
\text { if } \quad \sum_{k=1}^{N} n_{k} e^{i \theta_{k}}=0 \quad \text { then }|\alpha\rangle \rightarrow e^{i \phi}\left|\alpha e^{-i v t}\right\rangle
$$

The angle ϕ depends on the path.
The path depends on the initial state.
Quantum gate.

Withtwoions

- For any chosen timeT, it is al ways possid etofind a sequence of pulses

Thereis not limitation by thetrap frequency!

- Complety y indapendant of themotional state(noLDL restriction).
- Noadbressability.
- Thenumber of required pulses increases if thetimedacreases $N_{p} \sim \frac{8}{(v T)^{3 / 2}}$
- Limitations
- Lengh of thelaser pulses.
- Laser stability.

Condusions

Entanglement of Gaussian states

- Solved the prodem of shareability for arbitrary graphs.
- Connection with quantumstatistics. groundstateof a symmetric Hamiltonian.

New concepts for quantum gates with ions

-Nolimitation by trap frequency.

- New scheme
- New concept (resonant interaction).
- Fast (nct limited by trap frequency).
- Rdaust (arbitrary temperatures).
- Smple(no adbressability).

