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Multiparticle entanglement
1. Shareability: (Wootters/Schumacher)

If A is very entangled with B, then it is weakly entangled with C.

| | | 0ABC AB C
−Ψ〉 = ϕ 〉 〉

To increase the entanglement AC one has to decreases that of AB.

| | 001 | 010 |100ABCΨ〉 = 〉+ 〉+ 〉
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(Dür, Vidal and Cirac)

One may consider more particles and different configurations:
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II. Entanglement in quantum statistical models: (Nielsen, Fazio, Vedral, Vidal, Korepin)
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Entanglement between two particles: 

Which is the Hamiltonian for which this entanglement is maximal (at T=0)?



This talk: Gaussian states

Consider a undirected simple graph with N vertices.

Adjacency matrix A: , 1k lA = if k,l are connected

, 0k lA = otherwise
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Symmetry of the graph: automorphism group
1{ / } NG g A gAg S−= = ⊆

We determine the Gaussian state, invariant under G, which maximizes EoF for (k,l) 

( )( , ) gaussian with | | ,  such that Tr | |  is maximalg F k lT E  Ψ Ψ〉 = Ψ〉 Ψ〉〈Ψ 

Rotations 
+ reflections

Consider two points, k,l, such that for some               
,  ( )  and ( )g G g k l g l k∈ = =

All pairs



Gaussian states:
A

dim( )nH = ∞
[ , ]n nX P i=

is Gaussian if it can be written as:
( , )n nQ X Pke−ρ =

is a polynomial of degree 2 

CB

n nH H= ⊗

0Q ≥

ρ

Optimal state:
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1. Build a Hamiltonian
2 2 †( ) ( )g k l k l g

g G

H T x x p p T
∈

 = − + + ∑
2. Determine ground state
3. Determine ground state energy     .

0( )FE f E=
0E

Everything can be easily determined starting from the Adjacency matrix A.

Ψ

Extensions:
- General group (including undirected graphs, etc) if

,  ( )  and ( )g G g k l g l k∈ = =add
Index( , ) Index( , )k k k l=

- Qubits
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Examples

1255.37Icosahedron

6410.75Octahedron

20311.12Dodecahedron

8319.74Cube

4319.74Tetrahedron

N nodesN adjacentEoF x 100 Platonic Solid

1. Platonic solids:

Tendencies:
E decreases with the number of adjacent nodes.
E decreases with the total number of nodes.
E is suppressed in loops with an odd number of nodes.



62.62Cubic (3d)

62.69Trigonal (2d)

46.31Square (2d)

310.61Hexagonal (2d)

N adjacentEoF x 100 Lattice

Tendencies:
E decreases with the number of adjacent nodes.

III. Finite lattices:

II. Infinite lattices:
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Separation

D2 3 4 N/2

Nearest neighbors

N2 3 4 5 6
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Key points of the derivation
1. Entanglement of formation of symmetric Gaussian states:

(Giedke, Wolf, Krüger, Werner and Cirac)
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Symmetric Gaussian states: m n=

( ) ( )FE f= ∆ρ

A B

Gaussian
Covariant matrix

( )( )x pn k n k∆ = − − ( )f ∆with a monotonic function.

2. Express it in a linear form:
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  ∆ = +    
ρ γ

and



3. Optimization problem:

,

, ,0

1
sup inf Tr

i j

i j i j
s

sX P
s>Ψ→

  ∆ = +    γ
γ with      invariant under G.Ψ

5. Algebra + properties of covariant matrices:

, 0

1
supinf Tri j X P

s
sH H

s>Γ

  ∆ = Γ +    

( ) †0̀X g g
g G

H T X T
∈

= ⊕∑where

4. Use symmetry:

, inf | |i j H
Ψ

∆ = 〈Ψ Ψ〉

Hwhere       is a Hamiltonian of harmonic osc. which are  coupled according to the graph.



2. Limits on gates for trapped ions

(Wineland and col, Nature 2001)

motion

pushing
laser

head

target

(J.I. Cirac and P. Zoller, Nature 2000)

Quantum information processing with trapped ions:

Scalable proposals

- Internal states manipulated with 
lasers.

- Two-qubit gates by exciting 
motional states.

- Difficult to scale-up.



One just has consider two ions in a trap.

Most of the errors occur during two-qubit quantum gates.

We would like to design the most efficient quantum gates.

Current proposals: limitations

Two-qubit gates

(Molmer and Sorensen, Plenio, Monroe, Milburn and James, Leibfried and Wineland, Cirac and Zoller,...)

Time: 1Tν (tipically, of the order of 100 to achieve F=0.99).

Addressability:  Different lasers acting on different ions.

Low temperatures: 1 1Nη +

ν



New scheme based on a different concept

Insensitive to temperture:
No addressability:

No time limitation by the trap frequency.

Idea:

Use on-resonant lasers to kick the atoms No spectroscopic limitations.
Laser pulses must be short, and come from two different directions:

Limitation is laser control

(as in Poyatos, Cirac, and Zoller, 97)



(i) Use lasers to kick both ions.

Basic principle (with one ion):
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(ii) Free evolution in the harmonic trap.

Kick depends on the internal state of the ion and laser direction.
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Phase Space

We return to the initial state.
The wavefunction acquires a phase.

| |i i te eφ − να〉 → α 〉
1
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N
i

k
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n e θ

=

=∑if then

The angle φ depends on the path.

The path depends on the initial state.
Quantum gate.

1tν

2tν 1 2( )t tν +

Can be made independent of the initial
coherent state.

The phase is also independent.

1 2( )t tν +

Aφ =



With two ions

Two modes

No addressability.

The number of required pulses increases if the time decreases.

Limitations:
- Length of the laser pulses.
- Laser stability.
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Conditions

Control-phase
gate

For any chosen time T, it is always possible to find a sequence of pulses.

There is not limitation by the trap frequency!

Completely independent of the motional state (no LDL restriction).
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Conclusions
Entanglement of Gaussian states

New concepts for quantum gates with ions

- Solved the problem of shareability for 
arbitrary graphs.

-No limitation by trap frequency.

- New scheme:

Fast (not limited by trap frequency).
Robust (arbitrary temperatures).
Simple (no addressability).

New concept (resonant interaction).

- Connection with quantum statistics: 
ground state of a symmetric Hamiltonian.


