A Q_{ϕ} =25000 SUPERCONDUCTING **CHARGE QUBIT**

QUANT UM ELEC RONICS GROUP

CEA-Saclay, France

ARDA

YALE, USA

A. COTTET C. URBINA V. BOUCHIAT H. POTHIER A AASSIME P. JOYF7 D VION

D. ESTEVE M. DEVORET

R. VIJAY I. SIDDIQI F. PIERRE C. WILSON **R. SCHOELKOPF** M. DEVORET

Acknowledgements: A. Clerk & S. Girvin (Yale); J. Martinis (NIST Boulder)

THE JOSEPHSON TUNNEL JUNCTION: AN ATOM-LIKE SYSTEM TO WHICH YOU CAN ATTACH WIRES ...

.... IN 3 DIFFERENT WAYS

"CURRENT-BIASED JUNCTION"

 \mathbf{X}

phase across junction "RF-SQUID"

"COOPER-PAIR BOX"

island charge

$$Z(\omega) \sim Z_{\rm vac} = 377\Omega$$

ENERGY LEVELS OF THE COOPER PAIR BOX IN THE CHARGE REGIME

Zorin, Averin & Likharev '85

EXPTAL IMPLEMENTATIONS OF SQUBITS

CONTROL	CHARGE	FLUX	PHASE
MEASURE			
CHARGE	Saclay, SUNY Stony Brook, NEC, Yale, Chalmers, LPS, JPL,		
FLUX		SUNY Stony Brook, TU-Delft, UC Berkeley, NTT, Rome	NIST
PHASE	Saclay Yale/Saclay	IBM TU-Delft …	NIST U. Kansas U. Maryland

BOX AS SPIN 1/2

OFFSET CHARGE !

ENERGY LEVELS IN THE INTERMEDIATE REGIME

 $E_J/E_c = 4$

KEY IDEA : WRITE WITH CHARGE, READ WITH PHASE

Friedman & Averin, Zorin, Buisson et al.

ELECTRON MICROGRAPH OF SAMPLE

EXPERIMENTAL SETUP

Vion et al., Science 296 (2002), 286

CW ABSORPTION LINESHAPE AT OPTIMAL POINT

RELAXATION TIME AT OPTIMAL POINT

RABI OSCILLATIONS

MEASURING QUANTUM COHERENCE LIFETIME (1)

Ramsey fringe experiment, principle of atomic clocks

MEASURING QUANTUM COHERENCE LIFETIME (2)

Ramsey fringe experiment, principle of atomic clocks

RAMSEY FRINGES MEASUREMENT

TRANSITION FREQUENCY vs BIAS

LINEWIDTH CLOSE TO THE OPTIMAL POINT

2-QUBIT GATE

will prepare $\frac{|01\rangle - |10\rangle}{\sqrt{2}}$

QUANTUM vs CLASSICAL SPIN-SPIN CORRELATIONS FOR 2 QUBITS

Qubit1			
	X	Y	Z
Qubit2			
v	1	0.5	0.5
^	- 1	(<0.33)	(<0.33)
	0.5	1	0.5
T	(<0.33)	- 1	(<0.33)
7	0.5	0.5	1
	(<0.33)	(<0.33)	- 1

PRELIM^{ARY} RESULTS ON QUBIT READOUT PERFORM^{CE}

- Measurement time is <15 ns! (<< T₁)
- Single-shot qubit state readout recorded in < 100 ns
- Discriminating power = 76% for 1% change in $I_0 @ T=380 \text{ mK}$

CONCLUSIONS AND PERSPECTIVES

- EXISTENCE PROOF OF COHERENCE QUALITY FACTORS OF Qφ~25 000 FOR CHARGE-PHASE QUBITS
- GATES BASED ON SIMPLE CAPACITORS
- RF-PULSE READOUT SHOULD BE QUASIPARTICLE-FREE; SHOULD IMPROVE CONTRAST, EFFICIENCY AND REPETITION RATE
- PROTECTION FROM 1/f CHARGE NOISE AND FLUX NOISE CAN BE IMPROVED FURTHER WITHIN PRESENT TECHNOLOGY