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The title of this talk is meant to be a little bit provocative, given that this group mostly 
consists of quantum computing people...  But, don’ t get me wrong; I like quantum 
computing as much as the rest of you; I have been following the field with interest for 
about 8 years now.  I do not mean to apply that quantum computing will never be 
practical for some applications.  However, what I hope to convince you is that even
without the quantum speedups, an area that is closely related to (but distinct from) 
QC, called Reversible Computing, will actually be even more useful than QC for the 
majority of real-world practical computing applications.
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Abstract
• “Mainstream” quantum computing is very difficult, and 

its currently known applications are quite limited.
– Focus is on maintaining coherence of global superpositions.

• Reversible computing is much easier, and its long-term 
practical applications are almost completely general.
– Its benefits are provable from fundamental physics.

• Well-engineered reversible computers might yield 
general, �1,000× cost-efficiency benefits by 2055.
– We outline how this projection was obtained.

• More attention should be paid to implementing self-
contained, reversible, ballistic device mechanisms.
– We give requirements, proof-of-concept examples.

This is just a summary of the main points made in the already-announced abstract for the talk.  The first 
observation is that mainstream quantum computing, which relies on maintaining coherence of global 
superposition states, is for this reason very difficult to achieve technologically.  Moreover, its 
applications are quite limited.

If we avoid the requirement for global coherence and instead just require a sort of 
approximate local coherence, the resulting picture—classical reversible computing—is much easier to 
achieve technologically.  Nevertheless, it still has significant advantages (ranging from large constant-
factors to polynomial advantages, depending on the model) for, it turns out, the majority of general-
purpose computing applications, in the long term.  We can prove these advantages exist using 
thermodynamical and other considerations from fundamental physics.  We can show advantages in 
terms of both cost-efficiency and raw performance (operations per second).

I will show a projection based on existing technological trends and known 
fundamental limits which suggests that a well-engineered reversible computer should be able to give us 
a cost-efficiency boost for most applications of at least a factor of 1,000 by about the middle of this 
century.

The conclusion is that more people need to join this field (reversible computing) and 
help work on the detailed engineering design of reversible devices.  It is maybe not quite as interesting 
and deep of a subject, mathematically or theoretically speaking, as is quantum computing, but 
nevertheless it is still viewed as really far-out, blue-sky research from the perspective of industry at this 
time.  It occupies this sort of “ in between”  status, between theory and practice, and not so many people 
are interested in both worlds.  But, I believe it will be extremely important for the future of computing.
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Organization of Talk
1. Reversible Computing (RC) vs. 

Quantum Computing (QC)

2. Fundamental Physical Limits of Computing

3. Models and Mechanisms for RC

4. Nanocomputer Systems Engineering & 
the Cost-Efficiency Benefits of RC

5. Conclusion:  RC is a good area to be in!

So, here’s the structure of the talk.  First I will compare and contrast reversible and 
quantum computing in terms of their aims, requirements, and benefits.  Then, I’ ll 
spend a little time overviewing some of the fundamental physical limits of computing 
which form the basis for my models of computing that I use to analyze reversible 
computing.  Then, I’ ll talk about these models and illustrate some RC mechanisms.  
Next, I’ ll talk about how I analyze the cost-efficiency benefits of reversibility.  And 
my conclusion will be that RC is a good area to be in, at least for someone like me 
who wants to achieve practical engineering results.
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Part I

Reversible Computing versus 
Quantum Computing

In this first part of the talk, I compare reversible computing to quantum computing.
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QM, Decoherence & Irreversibility
• Everett & (more recently) Zurek taught us why it is not 

inconsistent w. our observations to view quantum 
evolution as always being completely unitary “ in reality.”
– What about apparent wavefunction collapse, decoherence, and 

thermodynamic irreversibility (entropy generation)?

– All can be viewed as “ just”  symptoms of our practical inability 
to keep track of the full quantum evolution, w. all correlations & 
entanglements that get created between interacting subsystems.

Subsystem
A

Subsystem
BU

Global pure state �AB

Subsystem
A

Subsystem
B~U

�
A

�
B

Density
matrices

Presumed ‘ true’  underlying reality: Approximate model often used:
(Also cf. Jaynes ’57)

Segue: First, a l ittle basic background for those who don’ t know.   (But I don’ t want to spend too much time on this slide because 
this topic was already covered by previous speakers.)  The best modern understanding from particle physics, etc. is that, as far as 
we know, it is perfectly consistent to view the time-evolution of the quantum state of any closed system (including the whole 
universe) as always being completely unitary “ in reality.”   As Levitin was saying in the last talk, phase space is conserved and
“ true”  entropy does not increase over time.  The empirical phenomena of “wavefunction collapse,”  decoherence of quantum states, 
and thermodynamic irreversibil ity (which are all basically equivalent) can apparently be satisfactorily explained as simply 
consequences of our inabil ity to track the full quantum evolution of a system.  

For example, suppose the full quantum state is unknown and we factor the system into subsystems and 
model our ignorance about the system using separate density matrices describing a distribution over pure states for the subsystems 
separately.  In doing this, we ignore the possible correlations and entanglement that might actually exist between the subsystems.  
It is a consequence of this style of modeling (as was first shown by Jaynesin 1957) that the entropy of the systems, so modeled, 
will in general increase when you allow them to interact, even if perfectly unitarily.  Zurek described in detail this process of 
decoherence, in which the off-diagonal coherence terms in the density matrix decrease towards zero.  Another reason entropy 
might increase is if the unitary interaction U between subsystems is not known exactly but only statistically.

An audience member asked if our inabil ity to track the quantum state was a matter of practice or principle.  
My view is that it is a matter of practice.  In practical terms we can never perfectly isolate any real physical system from some 
level of unwanted parasitic interactions with its outside environment.  However, if you considered a system that was truly closed, 
if you knew its exact quantum state at one time, and the exact form of its unitary time evolution, then the evolution of a definite 
state could always be tracked (either analytically or by a computer simulation with any desired accuracy) with no increase in 
entropy.

After the talk, Warren Smith objected to the Everett universal-wavefunction view because of the 
“equivalence of all bases”  in quantum mechanics, and it seems that he doesn’ t trust Zurek’sapproach of deriving a preferred basis 
for decoherence (e.g. position bases) by looking at the form of the interaction Hamiltonian.  However, it is my understanding that 
Everett augmented with Zurek really does work, and I have never seen a convincing and logically rigorous demonstration that it 
does not.  Perhaps Warren is correct that the consistency of theapproach has not really been absolutely thoroughly, rigorously 
proven, but in fact we almost never do have real consistency proofs, even in pure mathematics.  (In particular, the very 
foundations of analysis, e.g. ZF set theory, have never been proven consistent.)  I believe that as a matter of methodology, the
most pragmatic way to make progress, as rapidly as possible, in both mathematics and physics is to stick with the simplest 
available theories that seem to work (since we might expect that by Occam’ sRazor these are most likely to be valid) until there is 
some absolutely clear and definite proof of their inconsistency (either internally, in the mathematics, or a direct contradiction 
between the theory’ s predictions and experience) that forces us to move to an alternative model.  In my view there has never been 
a logically valid proof that plain quantum theory with only pure states and global unitary evolution (and no “ true”  wavefunction
collapse) is actually inconsistent with any aspect of our experience, and this theory is the conceptually simplest one that works, so 
I think that we must trust that theory’ s predictions until they are empirically (or logically) disproven.
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Quantum Computing 
• Relies on coherent, global superposition states

– Required for speedups of quantum algorithms, but… 
– Cause difficulties in scaling physical implementations

• Invokes externally-modulated Hamiltonian
– Low total system energy dissipation is not necessarily 

guaranteed, if dissipation in control system is included

• Known speedups for only a few problems so far…
– Cryptanalysis, quantum simulations, unstructured 

search, a small handful of others.  Progress is hard…

• ∴ QC might not ever have very much impact on 
the majority of general-purpose computing.

Now let’s compare reversible computing and quantum computing.  As we all know (at this conference), 
quantum computing crucially relies on maintaining coherent, global superposition states.  These are 
needed to obtain the polynomial to exponential speedups enabled by quantum algorithms.  But this 
requirement causes difficulties in scaling up physical implementations.  As long as the local 
decoherence rate is below a certain threshold, fault-tolerant error correction techniques can be applied 
to maintain global coherence, but these introduce a significant amount of additional asymptotic 
overhead in the complexity of quantum logic networks and algorithms.

A second aspect of most QC work that I want to emphasize is that virtually all of the 
existing theoretical and experimental frameworks for quantum computing invoke an external system 
(which is not usually well modeled) that is responsible for controlling the computation and driving it 
along its trajectory in configuration space.  (Although we had one previous speaker who discussed how 
to treat the controller as a quantum system as well.)  Having an external control is fine for quantum 
algorithms, but later in the talk I will emphasize the advantages of low total system-wide entropy 
generation.  I want to emphasize that the entropy generation of a complete computation (one that does 
not benefit from quantum speedups) is not necessarily minimized by the QC approach if the entropy 
generation in the external control system is included.  Later I will talk about models that are totally self-
contained.

A third aspect of quantum computing I want to point out is that we only know how to 
obtain asymptotic speedups so far for a very narrow class of problems, factoring and simulating QM 
and unstructured search and a few other number-theory problems.  All of these problems added 
together only comprise a miniscule portion of the entire world market for computing.  (Once RSA is 
broken and everyone moves to quantum cryptography, the biggest market for QC will probably be 
quantum physical simulations, but that’s still a tiny part of the world market.)  In the future, quantum 
algorithms with broader applications may yet be discovered.  But progress in this area has proven so far 
to be very difficult, and so we cannot count on this assumption.

As a result of primarily this third point, even if the decoherence problems can be 
solved, and we can scale to millions of qubits, QC itself might still not ever have a very significant 
impact on the majority of general-purpose computing.

Let me now contrast these points with Reversible Computing.
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Reversible Computing
• Requires only an approximate, local coherence of 

‘pointer’  states, & direct transitions between them
– Ordinary signal-restoration plus classical error 

correction techniques suffice; fewer scaling problems

• Emphasis is on low entropy generation due to 
quantum evolution that is locally mostly coherent
– Requires we also pay attention to dissipation in the 

timing system, integrate it into the system model.

• Benefits nearly all general-purpose computing
– Except fully-serial, or very loosely-coupled parallel, 

when the cost of free energy itself is also negligible.

First, reversible computing does not require global coherence of superposition states.  It only requires 
approximate local coherence for stable storage of naturally occuring stable ‘pointer’  states (eigenstates 
of the parasitic interaction Hamiltonian between the system and its environment) which are chosen as 
computational basis states, and temporary, local, approximate coherence of superpositions occurring 
along a direct transition between one pointer state and the next as the computer evolves through its 
configuration space.  This approximate coherence is needed only to maintain a low rate of local entropy 
generation; global coherence is not needed.  Therefore, we avoid the scaling problems associated with 
the fault-tolerant error-correction algorithms.  We can use engineering of decoherence-free subspaces 
(isolation of computational subsystems from their environment) to minimize local decoherence as far as 
possible, while using ordinary “classical”  techniques for signal restoration and error correction (as 
needed) to prevent the global trajectory of the computation from going awry.  This avoids many of the 
scaling problems of the full-quantum approach.

But if we can’ t implement quantum algorithms, what then is the point?  The point is 
on the low rate of entropy generation of a quantum evolution that is mostly coherent even if just in this 
limited, local fashion.  We will see that in the long term this low rate of entropy generation leads to 
speedups and thus improvements in cost-efficiency since entropy generation will be the primary 
limiting factor on the performance of future nanocomputing technologies.  Since our concern is 
minimizing entropy generation, we also have to pay attention to how the system is controlled, timed, 
and driven, and model the entropy generation due to this process, and take it into account in the full 
system design.

Finally, we will see that this approach gives a practical benefit for nearly all general-
purpose computing.  The only exceptions are cases where the economic cost of energy is negligible 
(this is not true today) AND the application is one where a fully-serial or totally loosely-coupled 
(distributed) parallel algorithm gives optimal performance.  This is because in these cases processors 
can be spread out over a large area and heat removal (cooling) is not a limiting factor on performance.  
However, the most general case is one in which the optimal algorithm for a given problem both benefits 
from parallelism AND requires frequent communication between distributed processors, so that there is 
a benefit from clumping processors together.  In such cases, by reducing power requirements, 
reversible computing can allow increased compactness of the design and thus higher performance.  
Also, even in fully-serial or loosely-coupled parallel applications, total energy dissipation is a concern 
simply because of the economic cost of energy.  Irreversible computing leads to a certain maximum 
performance per Watt of power consumption.  Only reversible computing can circumvent this limit.
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Terminology / Requirements

Yes, if we care about 
energy dissipation in 
the driving system

No, transitions can be 
externally timed & 
controlled

Closed system, evolves 
autonomously w/o 
external control

Time-Independent 
Hamiltonian,

Self-Controlled

Yes, if we care about 
performance

No, transitions can be 
externally driven

System evolves w. net 
forward momentum

Ballistic

Yes, as high as possibleYes, must be above a 
certain threshold

No new entropy generated 
by mechanism

Isentropic / 
Thermodynamically 

Reversible

Yes, as high as possibleYes, must be above a 
certain threshold

No heat flow in/out of 
computational subsystem

Adiabatic

No, only maintain 
stability of local pointer 
states+transitions

Yes, must maintain full 
global coherence, 
locally within threshold

Pure quantum states
don’ t decohere (for us) 
into statistical mixtures

Coherent

No, only reversible 
evolution of classical 
state variables must be 
tracked

Yes, device & system 
evolution must be 
modeled as ~unitary, 
within threshold

System’s full invertible 
quantum evolution, w. all 
phase information, is 
modeled & tracked

(Treated As)
Unitary

Required for 
Reversible 

Computing?

Required for 
Quantum 

Computing?Approximate Meaning

Proper ty of 
Computing 
Mechanism

This chart compares side-by-side the requirements for quantum and reversible computing.  A quantum 
computer must be treated as evolving unitarily and coherently (which mean almost the same thing), 
whereas a reversible computer only needs to be locally approximately coherent (which is easier) and 
we do not need to track the unitary evolution of a full quantum state, only the reversible evolution of 
classical state variables.  So it is much easier to model and simulate a reversible computer.  (No 
exponential explosion in size of state description.)

Both quantum and reversible computing need to be adiabatic, as nearly as possible.  
Adiabatic literally means, “no heat flow” ; if there is no heat flow between subsystems at different 
temperatures, this means there is no entropy generation.  Essentially it means the system is isentropic or 
thermodynamically reversible.

Next, a reversible system needs to be closed in the sense of being self-controlled, 
evolving autonomously under a time-independent Hamiltonian, with no external control, whereas a 
quantum computer can be externally controlled.  There are two reasons why the reversible computer 
needs to be self-controlled.  First, since we care about total system energy dissipation, we must model 
the dissipation in any timing/control/driving system, and in its interaction with our reversible 
computational evolution.  If we model it we may as well integrate it and consider the system as a whole 
to be autonomous.  Second, if the control system is external, there are some questions about the 
scalability of the distribution of the control signals throughout a large parallel computer scaled up in 3-
D.  With an autonomous model, we will see we can locally synchronize the processors.

Finally, a reversible system needs to be “ballistic” , which I take as meaning that the 
system (like a ballistic projectile) has a net forward momentum along its trajectory through 
configuration space, instead of just for example doing a diffusive random walk through its 
configuration space.  This is needed for performance.  A quantum computer, on the other hand, can sit 
statically storing its state whenever it is not being actively driven.
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Part II

The Fundamental Physical Limits of 
Computing

In this next part of the talk, I give a whirlwind tour through the different fundamental 
physical limits on computing that I know about and account for in my analyses.
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Fundamental Physical L imits of Computing

Speed-of-Light
Limit

Thoroughly 
Confirmed

Physical Theories

Uncertainty
Principle

Definition
of Energy

Reversibility

2nd Law of
Thermodynamics

Adiabatic Theorem

Gravity

Theory of
Relativity

Quantum
Theory

Implied
Universal Facts

Affected Quantities in 
Information Processing

Communications Latency

Information Capacity

Information Bandwidth

Memory Access Times

Processing Rate

Energy Loss 
per Operation

In our modeling efforts, we are not free to choose the mathematical structure of our computer model on a whim.  
If our model is to be physically realistic, it must respect the fundamental physical constraints on information 
processing that logically follow from our well-established theoretical models of physics.  

Einstein’s Special and General Theories of Relativity, together with Quantum Theory as expressed in the 
Standard Model of particle physics, together constitute an absolutely correct and precise description of our 
universe, as far as any currently experimentally-accessible phenomena are concerned.  Both theories have been 
confirmed and verified many times to an accuracy of many decimal places.  It is not likely that any further 
refinements of known physics will affect the limits of nanocomputing this century.

Relativity implies the speed-of-light limit on information propagation, as well as gravity.  Quantum theory 
implies many things, including Heisenberg’s Uncertainty principle, the relation between energy and frequency, the 
fundamental time-reversibility of physical law, the laws of thermodynamics, and the behavior of adiabatic (nearly 
perfectly ballistic) processes.  These lead to the following limits on computing:

(1) The speed-of-light limit implies a lower bound on communications latency across a machine of given 
diameter.  (2) The uncertainty principle together with the quantum definition of energy, imply an upper bound on 
information capacity for a system of given diameter and total energy.  (3) Together with the speed-of-light limit, 
this implies an upper limit on information flow rate or bandwidth density per unit area for a flow of given power. 
(4) These principles also yield a lower bound on average random-access times for a memory of given size and 
energy density.  (5) The quantum definition of energy also implies a limit on the rate at which useful bit-operations 
may be performed in a system of given free energy (due to the Margolus-Levitin theorem), as well as a limit on 
step-rate (clock frequency) for a logic system of given temperature. (6) The reversibility of quantum mechanics 
implies lower bounds on the entropy generated by bit erasure, and the free energy loss given the environment’s 
temperature.  (7) Therefore, irreversible computers in a given environment have a limited rate of operation per Watt 
of power consumption.  (8) These facts also imply a maximum rateof irreversible bit-operations within a fixed-area 
enclosure in a fixed-temperature surroundings.  (9) Meanwhile, the 2nd law of thermodynamics guarantees us that 
all systems (even reversible, adiabatic processes, as well as bits that are just statically storing data), still generate 
entropy at some rate, however small, and this limits the total capacity of a machine as a function of the entropy 
generation rate per device and the machine’s total power.  (10) Meanwhile, the adiabatic theorem of quantum 
mechanics teaches us that entropy generation of reversible operations is proportional to speed, which lets us put an 
upper limit on the rate of reversible operations per unit area. (11) Finally, general relativity gives loose upper 
bounds on the internal entropy and energy of computers of given diameter, which in turn limits their maximum 
speed and capacity.



11

Physics as Computing (1 of 2)

ops/angle
(1 r-op/rad = 2 �-ops/�)

Number of operations taken per 
unit angle of rotation

Angular 
Momentum

ops/ops = dimensionless,
max. value 100% (c)

Fraction of total ops of system
effecting net spatial translation

Velocity

Information (log #states), 
e.g., nat = kB, bit = kB ln 2

Physical information that is 
unknown (or incompressible)

Entropy

Number of internal-updateops , 
spatial transition ops , total ops if 
trajectory is taken by a reference 
system (Planck-mass particle?) 

Number of (quantum) operations
carrying out motion & interaction

Computational Interpretation

ops, ops, opsProper Time , 
Distance , Time

Operations or ops: 
r-op = �, �-op = h/2

Action

Computational UnitsPhysical Quantity

Incidentally, as a bit of a tangent to the talk, learning about the physical l imits of computing leads one to think about ways to 
reinterpret physical quantities themselves in terms of computation.  This is somewhat of a hobby of mine.  Let me go through this 
briefly.  (I am hoping to find time to prepare a complete paper on this soon.)

(1) Let us define “physical information”  as the log of the total number of distinguishable states of a physical system.  As 
some previous speakers have discussed, physical entropy can be interpreted as just a measure of the amount of the portion of that 
physical information whose specific informational content (identity, value) is completely unknown.  Zurek has suggested 
extending this definition to also include physical information that is incompressible for any reason, not just because it is unknown.  
This is because information that is incompressible is effectively entropy because you cannot do anything sensible with it (cannot 
get rid of it so the space can be reused for other purposes) except by expell ing it from the machine and turning it to actual 
unknown information.  Another way to look at this extension of the definition is that it allows us to appropriately describe the
entropy of correlated systems even “ from the inside,”  from the perspective of one of the correlated systems, which “knows”  the 
state of the other.  E.g., if we perform a controlled-NOT between qubit A which contains 1 bit of entropy and qubit B which is in a 
pure state (0 entropy), qubit B becomes entangled (essentially, correlated) with qubit A.  From the “ outside” , the total entropy is 
unchanged since the joint state is something l ike |00> mixed with |11> which stil l has 1 bit of entropy.  However, if you think of 
qubit B as an “ observer”  who has made a “ measurement”  (and indeed, real observers are presumably just large physical quantum 
systems) then we can say that as a result of the correlation, qubit B “knows”  the state of qubit A.  That is subjectively (from B’ s 
perspective) it is in a definite state (0 or 1) and “knows”  that qubit A contains the same value.  Since B has two redundant copies 
of this information – the copy in A and the copy inside itself – this 2 bits of information (the 00 or 11) can be “compressed”  into 1 
bit, e.g., by simply undoing the coherent measurement operation. But, it cannot be compressed any further than that, since there is 
nothing else that that bit is correlated with.  Actually Zurek’ sdefinition is restricted to algorithmically incompressible 
information, which is an uncomputable quantity in general, but I would go even broader than his definition and say that any 
information that is practically incompressible (infeasible to compress) is effectively entropy for all practical purposes.  Anyway, 
since entropy is just a special case of information, we measure it in information units, which are logarithms (of the count of 
distinguishable states).  I f we use the natural (base e) logarithm, we get the information unit which I call the “nat” , which is just 
equal to Boltzmann’ s constant k; if we use the logarithm base 2 we get the bit.

(2) Toffoli has previously suggestion that the physical concept of Action can be quantified as “amount of computation.”   I 
would like to propose a more specific interpretation along these lines.  Let us define an “operation”  or op (specifically, what I call 
a pi-operation, equal to Planck’s constant h) as any local unitary transform that rotates at least one quantum state onto an 
orthogonal one.  For example, rotating a spin in space by an angle of pi or 180 degrees, or a quantum controlled-not operation.  
Note that not all states need be transformed into orthogonal states for the transform to be considered an op.  Anyway, we can 
define fractions of operations (for example, the radian-op or h-bar) and thereby describe any trajectory of a quantum evolution as a 
composition of local operations of some magnitude, and quantify the total number of operations (in units of pi-ops or r-ops) 
involved in following that trajectory.  Action is traditionally defined as the time integral of the Lagrangian, which is kinetic minus 
potential energy.  Since potential energy is usually defined as negative, this is effectively potential energy plus the absolute value 
of potential energy; this absolute value becomes greater as the strength of interaction between two particles increases.  I t is 
reasonable to suppose that the potential energy represents the average rate of quantum operations involved in carrying out the 
exchange of virtual particles which implements the interaction force in quantum field theory.  Kinetic energy on the other hand we 
will see represents the rate of operations involved in translational motion.  The only kind of energy not included in the usual 
Lagrangian is the rest mass-energy, but it can be easily generalized to include it.  We will see that rest mass-energy represents the 
rate of operations in a system’ s updating of its internal state information (as opposed to its motion relative to or interactions with 
other external systems).  (3) Angular momentum can be interpreted as counting the number of ops involved in carrying out a 
rotation by a certain angle.  (4) Relativistic proper time, distance, and normal time along a trajectory through spacetime between 
two given points can seemingly all be defined by (respectively) the number of internal-update ops, spatial-translation ops, and 
total ops that would be involved if a reference particle (Planck-mass particle?) were to traverse that same trajectory.  These can all 
therefore be measured in ops.  (5) Velocity can be defined as spatial translation ops (momentum times time) as a fraction of total 
ops (energy times time).  It is thus dimensionless and its maximum value is 1 or c.
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Physics as Computing (2 of 2)

ops/time/info
= info−1

Generalized temperature of 
subsystems whose information 

is entropy

Thermal
Temperature

ops/time/info
= info−1

Update frequency, avg. rate of 
complete parallel update steps

Generalized
Temperature

ops/time = dimensionlessEnergy in subsystems whose 
information is entropy

Heat

ops/time = dimensionlessRate of spatial translation opsMomentum

ops/time = dimensionlessRate of internal opsRest mass-energy

ops/time = ops/ops = 
dimensionless

Rate of (quantum) computation,
total ops ÷ time

Energy

Computational Interpretation Computational UnitsPhysical Quantity

(6) The Margolus-Levitin theorem tells us that the rate of operations is l imited to at most 2 times the 
average energy (1x for operations along long dynamic orbits) divided by h/2.  Even though this is given as only a tight upper 
bound, we can consider it actually equal to the rate of operation if we note that we have defined operations in terms of 
orthogonalizing some states – not necessarily all.  (This was pointed out to me by Lloyd in personal discussion.)  So, we can say 
that physical energy * is* just a measurement of the rate of carrying out of operations.

(7) Rest mass-energy includes all energy associated with the internal motions and interactions within a 
system.  One can presume that all of mass is ultimately accounted for by some low-level transformations that are taking place.  
Anyway, to say that some energy is tied up in rest mass is only to identify a particular state of that energy.  Since other states of 
that energy are possible (e.g., two photons of that energy on a coll ision course just before coll iding to create the particle and its 
antiparticle), we can say that an operation as we have defined it is being carried out, even if the particle state itself does not 
change.

(8) Momentum (relativistic) can be presumed to measure the rate of ops that are carrying out translation of 
the system through space in the frame of reference of the observer.  One motivation for this definition, together with the one for 
rest mass-energy, is that if we further assume that internal transitions of a system can be considered “orthogonal”  to overall 
translations of the entire system, then it follows from the Pythagorean theorem that for a trajectory proceeding simultaneously in 
both of these “directions,”  E2 = m2 + p2.  Of course, this is exactly the special-relativistic relation between energy, rest mass, and 
momentum (in normalized units, where c=1), and in fact all of special relativity (length contraction, time dilation, ) follows from 
this.  So, in a sense we have proved special relativity from the computational interpretation of physics (except of course we 
“cheated”  in this by choosing our computational interpretation specifically so that it would achieve this goal).

(9) Given the definition of energy, we can define a generalized concept of temperature by dividing energy 
by physical information, thus the average rate of operations per unit of information, i.e. the rate of complete parallel update steps, 
or update frequency (like “clock frequency” ).  This is not the thermodynamic temperature since it applies even to systems of zero 
entropy whose thermodynamic temperature would be absolute zero.

(10) We can define heat as the portion of energy that is internal to (causing transitions between states of) 
subsystems whose state information is entropy (unknown, incompressible).

(11) Proper thermal temperature can then be defined as the generalized temperature of those subsystems 
whose information is entropy (whose energy is heat).

This is all very interesting, but of course it is stil l somewhat speculative.  However, I have not found any definite inconsistencies 
between these definitions and known physical laws.  In future work I hope to actively verify consistency with known physics and 
thus make these identities between physics and computation more rigorous and certain.
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Landauer ’s 1961 Pr inciple from basic quantum theory
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Back to the physical limits on computing now.  

Let’s give an example of the reasoning behind one of these 
relationships between fundamental physics and information processing.  This one is 
the motivation for reversible computing and was discovered in 1961 by Rolf Landauer 
of IBM research.  Landauer considered the minimum possible physical entropy 
generation that might result from the erasure of 1 bit of known information.  Although 
Landauer used a more involved argument, the drawing here suffices to prove his 
point.  There are 2 possible logical states of the bit in question, together with some 
number N of distinguishable physical states of the rest of the computer, for a total of 
2N distict states of the entire machine.  The unitary, one-to-one nature of time 
evolution in quantum mechanics guarantees that the number of distinct states of a 
closed system is exactly conserved.  Therefore, after the logical bit is erased, there are 
still 2N states of the machine.  There is the same total amount of variability, but it now 
must all reside in the rest of the machine.  If the information is not logically present, it 
must be in the form of unknown physical information, or entropy. Since the number 
of states of the rest of the machine was multiplied by 2, the amount of entropy (which 
is the logarithm of the state count) is increased by an addition of log 2.  A log 2 
amount of entropy is (ln 2) times as large as Boltzmann’s constant k.  To release k(ln
2) entropy into an environment at temperature T requires committing kT(ln 2) energy 
to the environment, by the very definition of temperature.  Thus, information erasure 
ultimately implies a minimum energy expenditure proportional to the temperature of 
the environment.  Note that cooling the system to a low temperature T can not help 
since the entropy must still eventually get out to the environment, incurring a 
dissipation of k times the temperature of the environment.
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Part III

Reversible Computing
Models & Mechanisms

I wish I could go into the rest of the physical limits of computing in detail, but I don’ t 
have time here.  I review some of the other limits in my paper “Physical Limits of 
Computing”  which you can find on my website 
http://www.cise.ufl.edu/research/revcomp.

In the next section of the talk I present some theoretical models and more concrete, 
proof-of-concept physical mechanisms for reversible computing.
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Later that year, Frank devises a simple mechanical model showing that parallel  
reversible systems can indeed be synchronized locally in 3 dimensions.

Frank, 2002—Briefly wonders if synchronization of parallel reversible computation 
in 3 dimensions (not covered by Margolus) might not be possible.

Frank, 2000, suggests microscale/nanoscale electro-mechanical resonators for high-
quality energy recovery with desired waveform shape and f requency.

Various parties point out that high-quality power supplies for adiabatic circuits seem 
difficult to build electronically.

Frank, 1997-2003, publishes a variety of rigorous theoretical analysis refuting these 
claims for the most general classes of applications.

Some computer science theorists suggest that the algorithmic overheads of  
reversible computing might outweigh their practical benefits.

Vieri, Frank and coworkers at MIT, 1995-99, refute these qualms by demonstrating 
straightforward designs for fully-reversible, scalable gate arrays, 
microprocessors, and instruction sets.

Some computer architects wonder whether the constraint of reversible logic leads to 
unreasonable design convolutions.

Younis & Knight @MIT do reversible sequential, pipelineable circuits in 1993-94.Koller & Athas, 1992 – Conjecture  reversible sequential feedback logic impossible.

Koller & Athas, Hall, and Merkle (1992) separately devise general reversible 
combinational logics.

Seitz, 1985—Has some working circuits, unsure if arbitrary logic is possible.

Seitz and colleagues at CalTech, 1985, demonstrate  working energy recovery 
circuits using adiabatic switching principles.

People question whether the various theoretical  models can be validated with a 
working electronic implementation.

Margolus at MIT, 1990, demonstrates a parallel quantum model of reversible 
computing—but only with 1 dimension of parallelism. 

Various parties point out that Feynman’s model only supports serial computation.

No general proof provided.  Later he asked Feynman about the issue; in 1985 
Feynman provided a quantum-mechanical model of reversible computing.

Carver Mead, CalTech, 1980 – Attempts to show that the kT bound is unavoidable 
in electronic devices, via a collection of counter-examples.

Drexler, 1980’s, designs various mechanical nanoscale reversible logics and 
carefully analyzes their energy dissipation.

Various parties propose that classical reversible logic principles won’ t work at the 
nanoscale, for unspecified or vaguely-stated reasons.

Zurek, 1984, shows that quantum models can avoid the chaotic instabilities.   
(Though there are workable classical ways to fix the problem also.)

Various parties note that Fredkin’s original classical-mechanical billiard-ball model  
is chaotically unstable.

Fredkin and Toffoli at MIT, 1980, provide ballistic “billiard ball” model of  
reversible computing that makes steady progress.

Bennett’s models criticized by various parties for depending on random Brownian 
motion, and not making steady forward progress.

Bennett devises a more space-efficient version of the algorithm in 1989.Bennett’s 1973 construction is criticized for using too much memory.

Landauer’s argument for unavoidability of logically irreversible operations was 
conclusively refuted by Bennett’s 1973 paper.

Rolf Landauer, 1961 – Proposes that the logically irreversible operations which 
necessarily cause dissipation are unavoidable.

No proof provided.  Twelve years later, Rolf Landauer of  IBM tries valiantly to 
prove it, but succeeds only for logically irreversible operations.

John von Neumann, 1949 – Offhandedly remarks during a lecture that computing 
requires kT ln 2 dissipation per “ elementary act of decision” (bit-operation).

Eventual Resolut ion of ClaimSome Claims Against Reversible Computing

This chart is unreadable on the projector screen, but that’s OK. The point is just to 
show you that there have been many objections to reversible computing over the years 
from skeptics who thought that it was just too good to be true, and so it must be 
impossible for some reason.  However, none of the many objections raised was ever 
proved rigorously, and in contrast, concrete counter-example constructions were 
found that clearly contradicted each of the objections.  You would think that if 
reversible computing really were impossible, then at least some of the attempts to 
prove this would have borne fruit.  In contrast, I believe that the best available 
concrete physical models of reversible computing that we have today (one of which I 
will show later) really do have no fundamental problems, and can indeed achieve 
significantly less than k ln 2 entropy generation per operation in practice.  (Though 
perhaps not less by more than a technology-dependent constant factor.)
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Bistable Potential-Energy Wells
• Consider any system having an adjustable, 

bistable potential energy surface (PES) in its 
configuration space.

• The two stable states form a natural bit.
– One state represents 0, the other 1.

• Consider now the P.E. well having
two adjustable parameters:
– (1) Height of the potential energy barrier

relative to the well bottom

– (2) Relative height of the left and right
states in the well (bias)

0 1

(Landauer ’61)

Let’s now develop a simple model of reversible computing.  This one was discussed 
in Landauer’s original paper in 1961.  Consider any system where there is a 
generalized “position”  coordinate (configuration variable) and a potential energy 
surface as a function of that variable.  Suppose this surface has multiple wells (local 
minima) separated by potential energy barriers.  Then, the ground states of the wells 
form natural stable or at least metastable distinguishable states for the system.  If there 
are two states, we get a natural bit.  Now, suppose that the well is adjustable by 
externally-applied influences.  We will suppose the following two characteristics of 
the well are separately controllable (next slide).
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Possible Parameter Settings
• We will distinguish six qualitatively 

different settings of the well parameters, as 
follows… 

Direction of Bias Force

Barrier
Height

In the following, we will discuss 6 qualitatively different settings of the well 
parameters: the height of the barrier may be lowered or raised, and the direction of the 
bias force can be neutral (to there is equal ground state energy in both wells), biased to 
the left, or biased to the right.  Of course one can continuously interpolate between 
these, but we will focus just on these 6 states.
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One Mechanical Implementation

spring spring

Rightward
bias

Leftward
bias

Barrier up

Barrier down

Barrier
wedge

State
knob

To illustrate the concept, here is a simple mechanical implementation of the bistable 
well.  We have a knob on a rod which can be pushed to the right or the left, and a 
barrier “wedge” which we can push up to block the motion of the knob between left 
and right positions.  So for instance, if you push on the left, the knob moves a little to 
the right, and then if you push the barrier up, you push the knob farther to the right 
and block its motion back to the left.  Then, if the force on the left is released, the 
knob stays where it is since it is blocked by the barrier wedge.
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Possible Adiabatic Transitions
• Catalog of all the possible transitions in 

these wells, adiabatic & not...

Direction of Bias Force

Barrier
Height

0 0 0

111

10 N

(Ignoring superposition states.)

leak

leak

“1”
states

“0”
states

Now, given this potential well paradigm, it is easy to characterize what are all the 
possible adiabatic vs. non-adiabatic transitions between these qualitatively different 
states.  For configurations with the barrier raised, we distinguish between 
configurations where the system is in the 0 (left) state – indicated by the lower-left 
graph in each pair of graphs in the top half of this diagram - and those where it is the 1 
(right) state – indicated by the upper-right graph in each pair.  In this diagram, the 
green arrows indicate possible adiabatic transitions.  The red arrows indicate non-
adiabatic transitions.    The thick red arrows in which the amount of dissipation is 
determined by the energy difference between the two states, which would need to be 
several kT in order to guarantee that when a barrier is raised, the system will be on the 
biased side of the barrier with high probability.  Note that in the middle column the 
energy difference between the states is zero, and as a result when the barrier is 
lowered sufficiently slowly the entropy generation can be made as low as k ln 2 
(medium red arrows).  In states where the barrier is raised and the system is in the 
metastable state, there will be a certain rate of leakage to the undesired state due to 
thermally-activated excitation over the barrier, and/or tunneling.  This leakage 
however can be made arbitrarily small by making the barrier sufficiently high (and 
thick as well if desired).  Thus we indicate leakage with a thin red arrow.
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Ordinary Irreversible Logics
• Principle of operation:  Lower a barrier, or not, 

based on input.  Series/parallel combinations of
barriers do logic.  Major
dissipation in at least one of

the possible transitions.
0

1

0

Example: Ordinary CMOS logics 

Input 
changes,
barrier

lowered

Output
irreversibly
changed to 0

• Amplifies input signals.

Now, given this picture, it is straightforward to design all the irreversible and 
reversible classical logics and memory mechanisms that have been proposed to date in 
terms of how what kinds of transitions they make in this diagram of possible 
transitions, and how the change in well parameters is controlled.

First, in ordinary irreversible logics, such an ordinary irreversible 
CMOS, the procedure for doing logic is as follows.  A potential energy barrier 
between two configurations (e.g. charge distributions in a circuit) is lowered 
conditionally by an input signal.  Different series/parallel combinations of barriers 
controlled by different inputs implement Boolean logic (AND/OR combinations).  
The output state of the circuit unconditionally changes to a given state regardless of its 
previous value.  Because this operation is logically irreversible, it must incur 
significant dissipation along at least one of the possible transitions.  (In fact much 
more than kT if the energy difference between states is high, as it needs to be for data 
storage with high reliability.)
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Ordinary Irreversible Memory
• Lower a barrier, dissipating stored information.  

Apply an input bias.  Raise the barrier to latch 
the new information
into place.  Remove input
bias.

0 0

11

10 N
Example:
DRAM

Dissipation
here can be

made as low 
as kT ln 2

Input
“0”

Input
“1”

Barrier
up

Barrier
up

Retract
input

Retract
input

Ordinary irreversible memory (e.g. a DRAM cell) works as follows.  A potential 
energy barrier between states is lowered, dissipating stored information to entropy.  
(The entropy generation can be as low as k ln 2 if the energy of the two states is 
equalized and the barrier is lowered sufficiently slowly, though this is not usually 
done.)  Then, an input signal applies a bias to the system towards the high or low 
direction.  Then, the barrier is raised, latching the system into its new state, thus 
latching the information into the storage cell.  Finally, the conditional input bias can 
be removed and the bias restored to a standard state.  On the next cycle the storage 
cell can be overwritten with a new input.
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Input-Bias Clocked-Barrier Logic
• Cycle of operation:

– (1) Data input applies bias
• Add forces to do logic

– (2) Clock signal raises barrier

– (3) Data input bias removed

0 0

11

10 N

Can amplify/restore input signal
in the barrier-raising step.

Can reset latch 
reversibly (4) 
given copy of
contents.

Examples: Adiabatic
QDCA, SCRL latch, Rod 
logic latch, PQ logic,
Buckled logic

(1) (1)

(2)

(2)
(3)

(3)

(4)
(4)

(4) (4)

(4)

(4)

There is a very similar way to implement memory that is reversible.  The only 
difference is that the memory is “erased” (actually, reversibly unwritten) by the 
reverse of the sequence that wrote it in the first place.  It can also be used for logic, by 
adding together biases in step (1) to perform majority logic (which together with 
negation is universal).  Also, when the barrier is raised in step (2) this can help 
amplify the strength of the stored signal.

There are a number of different physical implementations of adiabatic 
logic that have been proposed that use this scheme.  These include the adiabatic 
variants of the quantum-dot “cellular automata”  that have been studied by Lent, 
Tougaw and others mostly at Notre Dame; the SCRL (“Split-Level Charge Recovery 
Logic”) technique for adiabatic CMOS logic, by Younis, Knight at MIT (later 
modified by myself and Margolus to fix a bug), Drexler’s nanomechanical Rod Logic 
latch, Likharev’s superconducting Parametric Quantron, and another mechanical logic 
called Buckled Logic by Merkle.

The scheme is logically complete for simulating efficient reversible 
circuits, given an appropriate set of timing signals.  However, using majority logic is 
somewhat cumbersome, and slightly simpler techniques are possible.
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Input-Barrier, Clocked-Bias Retractile

• Cycle of operation:
– Inputs raise or lower barriers

• Do logic w. series/parallel barriers

– Clock applies bias force which changes state, or not

0 0 0

10 N

• Barrier signal amplified.
• Must reset output prior to input.
• Combinational logic only!

(1) Input barrier height

(2) Clocked force applied →

Examples:
Hall’ s logic,
SCRL gates,
Rod logic interlocks

Here is another scheme.  This one has the disadvantage that by itself it can do 
combinational logic only.  

The cycle of operation is that, starting from a biased state at the lowest 
energy level, the potential energy barrier is raised or lowered, depending on the input 
data.  Then an unconditional bias force is applied, which either changes the state, or 
not, depending on whether the barrier was raised.  Series/parallel combinations of 
barriers can determine whether a path to the other state exists or not.  Note that the 
input signal (height of barrier) is amplified by the (possibly stronger) bias force.

A problem with this technique is that if one conceives of removing the 
input as having the effect of unconditionally lowering the barrier (which would cause 
dissipation), then one is not allowed to remove the input until downstream circuits 
have finished using the output and the output is retracted.  Thus the technique is called 
“retractile cascade” (by Hall) and it has the unfortunate property that input circuits 
cannot be reused until downstream computations are finished.  (It is thus equivalent to 
Bennett’s 1973 embedding of irreversible Turing machines into reversible ones that 
temporarily take a unit of space for each operation performed by the original 
machine.)

Several proposed adiabatic logic schemes used this method.  J. Storrs 
Hall proposed an electronic logic using this technique together with (somewhat 
idealized) switches.  Younis & Knight’s SCRL technique did logic in this way (rather 
than by the majority logic approach mentioned earlier) in combination with input-bias, 
clocked-barrier latching used for reversible storage only.  Drexler’s Rod logic 
interlocks also worked in this fashion.
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Input-Barrier, Clocked-Bias Latching

0 0 0

1

10 N

• Cycle of operation:
1. Input conditionally lowers barrier

• Do logic w. series/parallel barriers

2. Clock applies bias force; conditional bit flip

3. Input removed, raising the barrier &
locking in the state-change

4. Clock
bias can
retract

Examples: Mike’s
4-cycle adiabatic
CMOS logic

(1)

(2) (2)

(2) (2)

(3)

(4)
(4)

Finally, after drawing the other pictures (in Spring 2000) I realized that there is a very 
simple way to modify the previous technique to achieve the best of both worlds: 
Simple series/parallel logic together with a latching capability in a single mechanism.  
I call this Input-Barrier, Clocked-Bias Latching.  

It is the same as the last slide, except that the standard default state 
when no input data is present is to have the barriers raised.  Then, when the input 
comes in, it conditionally lowers the barrier.  Logic is performed with series/parallel 
barriers as before.  The clock applies the bias force, conditionally changing the state.  
But now, the input signal can be immediately removed (unlike the retractile cascade 
case) because this will not lower any barriers (which might have caused dissipation).    
Instead, the barriers are unconditionally raised (or kept raised if they were raised 
already), which locks in the new state.  Now, the bias force can be retracted if desired.  
The storage element can be reset by the reverse procedure, possibly operating via a 
different path controlled by different inputs.

I had never seen a previous concrete reversible logic mechanism that 
used this approach, so I invented one.  I will show you my original electronic 
implementation shortly.  First, for clarity let me discuss the basic components of a 
simpler mechanical model.
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Sleeve

(a)

(b)

(c)

(d)

(e)

(f)

Full Classical-Mechanical Model
The following components are 
sufficient for a complete, scalable, 
parallel, pipelinable, linear-time, 
stable, classical reversible 
computing system:

(a) Ballistically rotating flywheel 
driving linear motion.

(b) Scalable mesh to synchronize 
local flywheel phases in 3-D.

(c) Sinusoidal to flat-topped 
waveform shape converter. 

(d) Non-amplifying signal inverter 
(NOT gate).

(e) Non-amplifying OR/AND gate.

(f) Signal amplifier/latch.

Primary drawback: Slow propagation
speed of mechanical (phonon) signals. cf. Drexler ‘92

Here is a full classical-mechanical model of reversible computing that avoids all the objections raised by various parties about 
previous approaches.  Roughly the same mechanisms were described earlier by Merkle and Drexler in their various papers on 
reversible mechanical logics.  The logic has the following properties which are desirable: (1) Complete – By this I mean universal 
for self-contained universal reversible logic, with no critical parts missing (such as resonators, or inverting logic). (2)  Scalable –
By this I mean that devices can be built out in 3 dimensional arrays and operated in parallel (up to the limit of leakage) (3)  
Parallel – Oh, I just said this. (4)  Pipelinable– By this I mean that pipelined, sequential logic (with feedback) can be implemented 
(so long as it is reversible) (5)  Linear time – By this I mean actually that it imposes no asymptotic spacetime overheads compared 
with any idealized reversible circuit scheme also based on local communications. (6) Stable – By this I mean there is no chaotic 
instabil ity (accumulation of errors) in the configuration over time. (7)  Classical – Oh, by the way it does not require quantum 
coherence. (8)  Reversible – Asymptotically zero entropy generation in the adiabatic (low speed) limit.

Here are the components.  Rods are implicitly constrained by rigid supports to move only in desired directions.
(a) Flywheel, rotating nearly ballistically (however we can reversibly replenish any adiabatic losses from a resonant power 
source).  The wheel rotation couples to a roughly sinusoidal linear motion of a connected rod (like the connection between a steam 
engine piston and a locomotive wheel).
(b) Arbitrarily many such flywheels can be reversibly synchronized with each other in 3D via a simple mesh of rigid 
interconnecting rods.  However I sti ll need to investigate whether there might be scaling problems due to the following: The 
longer the rod, the larger the wavelength and lower the frequency and energy of undesired excited modes of vibration (e.g. 
compression/expansion modes) that the mesh can support.  As these energies get smaller relative to the state where these modes 
are not excited (the desired rotation mode), the energy gap for purposes of the adiabatic theorem may get narrower and slower 
speeds may be required in order to keep the leakage of energy from the desired mode to the excited mode low.
(c) Custom-shaped track to convert roughly sinusoidal rod motions into flat-topped waveforms of translation of another rod, 
needed for purposes of some adiabatic logic schemes.
(d) Simple non-amplifying signal inverter (NOT gate).
(e) Simple non-amplifying OR/AND gate.  I f either of the rods on the left movesto the right, the rod on the right is pushed to the 
right, against the spring (squiggly line).  Alternatively, if *both* of the rods move to the left, the rod on the right is pushed to the 
left by the spring.
(f) Reversible “ interlock”  (signal amplifier/latch, Drexler’ s term), a simple variant of the bistable well mechanism on slide 18.  
Amplification mode: Input data pulls vertical rod down, or not. Then an unconditional signal from the left pushes the rod right, 
with protruding knob either being blocked by the vertical rod, or proceeding to the right.  Latching mode: vertical rod is 
unconditionally lowered.  Input data on horizontal rod moves the protruding knob either to the right past the vertical rod, or not.  
Vertical rod is raised, blocking the return path.  Input force is removed but rod remains displaced if it was pushed past the vertical 
rod.  Several protruding knobs with corresponding blocking rods can implement logic.
Not shown is a simple bistable well mechanism (like the one in slide 18) that can be used to perform bit erasure with only ~k ln 2 
entropy generation if desired.

A drawback of the all-mechanical approach is the slow propagation speed of mechanical (phonon) signals, essentially the speed of 
sound in the material used.  However, if we need faster signal propagation than this, we can always transduce a given mechanical 
signal to an electrical one, which can be propagated nearly losslessly along a shielded transmission line.  (Hm, although at low 
frequencies it may be difficult to block the resulting RF signals with nanoscale-thickness shields!!)
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• Energy stored
mechanically.

• Variable coupling
strength � custom
wave shape.

• Can reduce losses
through balancing,
filtering.

• Issue: How to
adjust frequency?

A MEMS Supply Concept

Here is another scheme in which the resonator is still mechanical (this is nice because 
some mechanical oscillators have very high Q) while the adiabatic logic can be 
electronic.  We have an oscillating flexion-based spring (constrained to flex primarily 
in one dimension only) connected to one half of a parallel-plate capacitor.  The 
resulting variable capacitance induces a variable voltage waveform on the output 
electrode, given a DC bias on the mobile plate.
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MEMS/NEMS Resonators
• State of the art of technology demonstrated in lab:

– Frequencies up to the 100s of MHz, even GHz
– Q’ s >10,000 in vacuum, several thousand even in air

• Rapidly becoming 
technology of choice
for commercial RF 
filters, etc., in 
communications
SoC (Systems-on-
a-Chip) e.g. for 
cellphones.

Here is a photo I stole off the web, of a MEMS disc resonator (operates in an 
expansion/contraction vibrational mode, in which there is a node of motion at the 
center support point, for low losses).  Some resonator structures have been 
experimentally validated at frequencies up to hundreds of MHz and even GHz, with 
Q’s of up to and over 10,000 in vacuum, and several thousand even in air.  This is 
today emerging as a real-world commercial technology for embedded systems-on-a-
chip for wireless communications, e.g., chips in cellphones, which need high-Q 
resonators to build good filters and amplifiers.

Perhaps we could do even better all-electronic resonators using 
superconducting technology, based on some of the superconducting quantum 
computing talks on Friday (multi-GHz systems with Q’s up to 100,000!!)
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Graphical Notation for  Reversible Circuits

• Based on analogy with earlier mechanical model

• Source for a flat-topped resonant signal
– Cycle length of n ticks
– Rises from 0�1 during tick #r

– Falls from 1�0 during tick #f

• Signal path with 1 visualized as displacement 
along path in direction of arrow:

• Non-amplifying inverter:

• Non-amplifying OR:

r
fn

This slide is a sketch of an (unfinished) new graphical notation I am currently working 
on for describing reversible circuits.  The lollipop symbol represents a source for a 
flat-topped resonant signal with a cycle length of n ticks (time units), which rises 
during the superscript tick (mod n) and falls during the subscript tick.

The line with a dot represents the non-amplifying reversible inverter.

The piston-looking thing represents the non-amplifying OR/AND 
(however there is still ambiguity in the notation as to which it is, guess you could have 
it always be OR and add dots on the input and output to turn it into AND).
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Graphical Notation, cont.
• Interlock (Amplifier/Latch):

– If gate knob is lowered (1) then a 
subsequent 0�1 signal from the left will be passed 
through to the right, otherwise not.

– Simplified “electroid” symbol (Hall, ‘92) gate

Here is a complicated symbol for the interlock.  A simpler notation was suggested by 
Hall in his 1992 paper, a representation of an ideal switch in which if the gate signal is 
1, the input is passed through to the output.  This may be missing some information 
about the initial state, biasing, etc. that is implicit in the interlock, but I think this can 
be fixed.  I am not yet quite sure if this set of symbols is sufficient, but I think that it 
is.
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2LAL: 2-level Adiabatic Logic

• Use simplified T-gate symbol:

• Basic buffer element:
– cross-coupled T-gates

• Only 4 timing signals,
4 ticks per cycle:
– φi rises during tick i

– φi falls during tick i+2 mod 4

P

P

P

:≡

in

out

φ1

φ0

0  1  2  3
Tick #

φ0

φ1

φ2

φ3

(Implementable using ordinary CMOS transistors)

Anyway here is a simple adiabatic logic scheme, here demonstrated using ordinary 
CMOS transistors, that is based on the new operation paradigm discovered on slide 24 
earlier (input-barrier, clocked-bias latching).  For convenience we use Hall’ s electroid
(switch) symbol, which can be implemented in CMOS with a parallel nFET/pFET pair 
(transmission gate).

There is a basic clocked buffer element consisting of a pair of cross-
coupled switches.

This logic scheme is more economic than many previous ones because 
it requires only 4 global timing signals, really just 4 different phases of a single 
waveform.  These are shown in the timing diagram.  The top and bottom portions 
must be flat for at least a full tick.  The shape of the transitions is arbitrary (though the 
slope should be finite everywhere and scale down with increasing tick length).
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2LAL Cycle of Operation

in

in→1

in=0

φ0→1

φ0→1

φ1→0

φ1→1

out→1

out=0

φ0→0

φ0→0

in→0
φ1→1

out→0

Tick #0 Tick #1 Tick #2 Tick #3

Here is the cycle of operation of the buffer gate in the 2LAL scheme.  Initially, all 
signals are low (red, 0) and the switches are off.  Then in tick 0, the input transitions 
to 1 (at the same time as phi_0), and the output switch turns on, or not (input 
conditionally lowers barrier).  Now in tick 1, phi_1 goes high (unconditional bias) 
taking the output with it, or not.  This turns on the reverse switch, or not.  (If so there 
is no dissipation since the input is at the same level as phi_0.)  In tick 2, the input is 
retracted from its source (and also simultaneously by phi_0 in the upper case), turning 
off the output switch (unconditional barrier raising).  Now the output information is 
latched into place.  Finally in tick 3 phi_0 reverts to its low state which does not affect 
anything inside the circuit but prepares us to be able to turn on the forward switch 
again in the next cycle.  Meanwhile, the next gate in the chain restores the output to 
the zero level.  (This particular gate is intended to be used as part of a pipeline of 
similar gates.)
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2LAL Shift Register Structure
• 1-tick delay per logic stage:

• Logic pulse timing & propagation:

in
φ1

φ0

φ2

φ1

φ3

φ2

out

φ0

φ3

in

in

0  1  2  3  ... 0  1  2  3  ...

Here is how to build a shift register of 2LAL buffers: Just connect them together with 
incrementing phases on successive clock signals.  A pulse introduced at the input will 
propagate down the chain, 1 stage per tick.  If CMOS transmission gates are used for 
switches, then dual-rail logic must be used.



33

More complex logic functions
• Non-inverting Boolean functions:

• For inverting functions, must use quad-rail 
logic encoding:
– To invert, just

swap the rails!
• Zero-transistor

“ inverters.”

A

B

φ

A

AB

A B

φ

A∨B

A0

A0

A1

A1

A = 0 A = 1

How about more complex functions?  Again, series/parallel combinations of input-
controlled switches will do the job.  (Forward parts shown.)  However, one must 
remember that information on internal nodes (such as the A output of the left circuit) 
must also be retracted by subsequent gates.  Inputs that are not echoed in the output 
(e.g. B in both these examples) must be retracted seperately by some other circuit.

The easiest way to do inverting functions is to use a dual-rail encoding: 
a pulse on one wire represents 0, while a pulse on another represents 1. (Quad-rail 
encoding is shown since this is needed if switches are implemented using CMOS 
transmission gates.)  Then a NOT gate is just a renaming of rails.  Dual-rail has the 
further advantage of allowing the total magnitude of back-reactions on the resonant 
driver to be data-independent.
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Reversible / Adiabatic Chips 
Designed @ MIT, 1996-1999

By the author and other then-students in the MIT Reversible Computing group,
under AI/LCS lab members Tom Knight and Norm Margolus.

So anyway, using another (more complicated, and buggy) adiabatic logic style, my 
collaborators and I built these reversible chips at MIT (under Tom Knight and Norm Margolus) to 
demonstrate that the architectural problems of reversible logic are straightforward to solve.  Tick (by 
myself and Scott Rixner) was a simple non-adiabatic microprocessor implemented in standard CMOS 
that nevertheless implemented a logically reversible machine-language instruction set, as a proof-of-
concept and basis for comparison with fully-adiabatic circuits. FlatTop (me, Nicole Love, Carlin Vieri, 
Josie Ammer) was the first scalable, universal, fully-adiabatic reconfigurable processor, capable of 
efficiently simulating 2D and 3D reversible circuits of arbitrary complexity when tiled in large arrays.  
(FlatTop works by simulating in SCRL the Margolus BBMCA cellular automaton which itself 
simulates Fredkin’s BBM billiard ball model of reversible computing which itself simulates reversible 
logic networks composed of Fredkin gates, which themselves can simulate arbitrary reversible CAs –
the simulation is so indirect that it is not very efficient, but it is universal for reversible CAs with “only”  
constant-factor overhead.  Anyway it is just a proof of concept.)  XRAM (Carlin, Josie) was an 
adiabatic memory with a reversible interface (though I have since invented far more efficient ones), and 
Pendulum (Vieri, with ISA mods from me) was a complete, fully-adiabatic, MIPS-style 
microprocessor.

This chip-design work (the Pendulum project, DARPA-funded under the Scalable 
Computing Systems Program) demonstrated that reversible logic is by no means incompatible with 
traditional styles of computer organization.  It only requires a fairly minor translation of traditional 
architectural methods.

However, this work begged the question: Can reversible computing ever really be 
cost-effective?  Can the overheads of reversible and adiabatic operation ever be outweighed by their 
energy savings?

It was the goal of my subsequent research to answer this question, using a principled 
systems-engineering methodology which I will describe.
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Part IV

Nanocomputer Systems Engineering: 
Analyzing & Optimizing the Benefits 

of Reversible Computing

In this part of the talk I discuss my recent work on what I call “Nanocomputer 
Systems Engineering”  – my buzzword for analyzing and optimization the system-
level cost-efficiency benefits to be gained for future nanocomputing from doing 
reversible computing.
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• Claim: All practical engineering design-optimization can 
ultimately be reduced to maximization of generalized, 
system-level cost-efficiency.
– Given appropriate models of cost “$” .

• Definition of the Cost-Efficiency %$ of a process: 
%$ : $min/$actual

• Maximize %$ by minimizing $actual

– Note this is valid even when $min is unknown

Cost-Efficiency:
The Key Figure of Merit

Throughout this work, we rely on cost-efficiency as the ultimate figure of merit 
for any engineering design optimization problem.  Even when it appears that we are 
optimizing something else, such as computer performance or energy efficiency, if we 
look closely at the reason why we are optimizing these things, we find that always 
there is an economic motive lurking in the background.  Decision theory teaches us 
that we are always trying to maximize the utility (benefit minus cost) that we can 
obtain, given our available resources.  Or, equivalently, we are always trying to 
minimize the amount of our available resources that must be used up – in other words, 
the cost – in order to achieve some given fixed amount of economic benefit as a result 
of achieving some goal.

Whenever we are minimizing cost to achieve a given result, we are 
maximizing something I call the cost-efficiency of the process used to obtain the 
result.  Efficiency is in general the fraction of resources that are well-spent (given 
some definition of “well” ).  For example, the thermal efficiency of a heat engine is the 
fraction of heat that is transformed into useful work.  Cost-efficiency is the fraction of 
the cost that we spend that actually leads directly to the desired result.  We can say 
that this fraction is simply the minimum cost that could possibly yield the desired 
result.  The ratio between minimum cost and actual cost is the fraction of cost that is 
well-spent.  

Of course, the minimum cost may be difficult to calculate.  However, 
we know that whatever value the minimum cost has, anything we can do to reduce the 
actual cost will help to improve our overall cost-efficiency.
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Important Cost Categories in 
Computing

• Hardware-Proportional Costs:
– Initial Manufacturing Cost

• Time-Proportional Costs:
– Inconvenience to User Waiting for Result

• (Hardware×Time)-Proportional Costs:
– Amortized Manufacturing Cost
– Maintenance & Operation Costs
– Opportunity Costs

• Energy-Proportional Costs:
– Adiabatic Losses
– Non-adiabatic Losses From Bit Erasure
– Note: These may both vary 

independently of (HW×Time)!

Focus of most
traditional
theory about
computational
“complexity.”

These costs
must be 
included also in 
practical
theoretical
models of
nanocomputing!

Now, in order to make progress in the cost minimization of any system, the first thing we need is a good model of what 
the primary sources of cost really are.  In systems that perform computing tasks, in particular, we can identify a number of 
different sources of cost.  In this slide, we categorize these costs according to the key parameters of the computation to which they 
are proportional.

Of course, an obvious category of cost is computing is the cost to actually build a machine that has 
sufficient memory and storage capacity to carry out the desired computation.  In a given technology, this cost is roughly 
proportional to the number of bits of capacity needed for the computation, and also to the amount of physical space (in cubic 
meters, say) occupied by the machine.  In the traditional theory of so-called “computational complexity” , they count the number 
of bits needed, and call this “ space complexity.”

Another obvious measure of cost in computation is the cost to the user, in terms of inconvenience, 
frustration, or lost profits or opportunities, of having to wait a larger amount of time before the result of the computation is
available.  Traditional complexity theory approximates this by the number of computational “ steps”  or machine clock cycles 
taken, and calls it “ time complexity.”

However, in the real world, both of these measures are inadequate.  Space complexity by itself is 
misleading, because a machine can be reused to perform many computations, so not all of the manufacturing cost can be attributed
to a single task that is performed.  And, time complexity is inadequate, because it ignores the cost of using additional hardware.  A 
more accurate measure of cost in computing is something I call “ spacetime complexity.”   This is the product of the utilized 
capacity per unit time, multiplied by the amount of time used.  This would be the cost to rent the needed capacity for the needed 
amount of time.  Spacetime cost reflects the real manufacturing cost, amortized over the expected lifetime of the machine.  It also 
reflects maintenance and operation costs, for example to repair or replace processors on a regular basis, or to provide a baseline 
level of standby power to all components in the machine.  It also reflects the opportunity cost of not using the given capacity to 
perform some other computation.

Finally, another increasingly-significant component of costs are the energy-proportional costs.  This 
includes the cost of free energy used (such as electrical energy) the inconvenience to the user of recharging or refueling for 
portable devices, and the costs associated with waste heat disposal.  For example, in a major data center, safely releasing a certain 
number of megawatts (a not-unheard-of number today!) of waste heat into the atmosphere requires renting a proportional amount 
of land (planetary surface area), in order to provide sufficient room for the exhaust vents on the building’ s roof!

There is a contribution to energy cost that comes directly from spacetime cost, due to the standby power 
consumption of devices due to leakage, decay, or decoherence.  However, other components of energy cost include adiabatic 
losses, which can scale down in proportion to the speed at which a computation is performed, and non-adiabatic losses, which 
result from the erasure of bits of information, and the discarding of their associated energy.  Both of these sources of energy cost 
may scale independently of spacetime cost, and so they must be considered separately in any proper analysis of total system cost-
efficiency.
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Computer Modeling Areas

1. Logic Devices

2. Technology Scaling

3. Interconnections

4. Synchronization

5. Processor Architecture

6. Capacity Scaling

7. Energy Transfer
8. Programming
9. Error Handling
10.Performance
11.Cost

An Optimal, Physically 
Realistic Model of Compu-
ting Must Accurately 
Address All these Areas!

A good theoretical model of computing suitable for real-world systems-engineering should include model components for all of 
the key areas shown here.  
• The logic device model addresses the very smallest functional components of the computer, which manipulate individual bits.  
These could be anything from conventional transistors, to nano-electromechanical switches, to spintronic transistors, to quantum 
logic gates.
• The technology scaling model tells us how the key characteristics of the logic devices change as technology progresses and 
fundamental physical characteristics are varied, for example as we scale them to smaller sizes, or operate them at higher or lower 
temperatures.
• The interconnect model deals with the characteristics of pathways for the flow of information through the machine.  One valid 
way of handling interconnects is to treat them as a type of device.  But interconnects cannot be ignored, they way that they were in 
most early models of computing.
• The synchronization or timing model tells us how device operations are synchronized with each other, so that they can exchange 
information.  Current systems use global clock signals for synchronization, but local, “ self-timed”  designs are also feasible.  The 
model must account for the means of disposal of any entropy in the timing sequence that is removed by the synchronization 
procedures.
• The processor architecture model describes how the machine’ s circuits are organized so as to carry out complex computations.
• The capacity scaling model tells us how the architecture changes as the capacity of the machine is increased.  Usually, we take a 
simple multiprocessor approach of simply adding more identical copies of the same kind of processor.  (Preferably, connected to 
at most a finite number of immediate neighbors via bounded-length connections – e.g. a mesh.)
• The energy transfer model describes the distribution of temperatures, and the detailed flow of free energy and waste heat, or 
equivalently, known information and entropy, through the machine.
• The programming model describes how the architecture can be programmed to carry out arbitrary desired computations.
• The error handling model tells how dynamically-occurring errors or faults are detected and corrected, and how static defects are 
detected and worked around.  The error handling model must also account for how the entropy of the corrected errors is disposed 
of.
• The performance model allows us to predict how the execution time of a well-defined algorithm wil l scale as we increase the 
size of the computational task to be performed, and accordingly the capacity of the machine needed to solve it.
• Finally, the cost model integrates all the important componentsof cost described earlier to accurately assess the overall cost of a 
computation, including both spacetime-proportional costs and energy-proportional costs.
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Important Factors 
Included in Our Model

• Entropic cost of irreversibility

• Algorithmic overheads of reversible logic

• Adiabatic speed vs. energy-loss tradeoff

• Optimized degree of reversibility

• Limited quality factors of real devices

• Communications latencies in parallel algorithms

• Realistic heat flux constraints

The model analyzed in this work incorporates all of the important factors listed here.  
This has never been done before.  Most traditional models of computing, such as 
Turing machines, ignore the entropic cost of irreversibility.  Some early discussions of 
reversible logic, such as those by Fredkin and Drexler, ignored the issues of the 
algorithmic overheads, as well as the adiabatic speed vs. energy-loss tradeoff.  Work 
by Bennett addressed the algorithmic overheads, but did not reveal how to optimize 
the degree of reversibility, to trade off the algorithmic overheads against the energy 
savings, to maximize overall cost-efficiency.  Finally, most work in reversible 
computing ignores the limited quality factors achievable in real devices, which always 
suffers some non-zero baseline rate of entropy generation due to leakage, decay, and 
error processes.  Our model incorporates leakage.  Finally, there is an important 
tension between the communication requirements of parallel algorithms, which want 
processors to be packed close together as compactly as possible (i.e. in 3 dimensions), 
versus the heat flux constraints of cooling systems, which want processors to be 
spread farther apart, over (at most) a two-dimensional surface.  In this work, we 
optimized both reversible and irreversible computers in the face of all these 
constraints, in order to make the best possible case for both kinds of machines, so as to 
make a fair comparison between them.
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Technology-Independent Model of 
Nanoscale Logic Devices

Id – Bits of internal logical state information per nano-
device

Siop – Entropy generated per irreversible nano-device 
operation

tic – Time per device cycle (irreversible case)
Sd,t – Entropy generated per device per unit time (standby 

rate, from leakage/decay)
Srop,f – Entropy generated per reversible op per unit 

frequency
�d – Length (pitch) between neighboring nanodevices
SA,t – Entropy flux per unit area per unit time

Our model includes some treatment of all the modeling areas described earlier.  Just to 
give an example of one of the model components, here are the key external 
characteristics of nanoscale logic devices in our model.  The focus here is on size 
(elld), capacity (Id), raw performance (reciprocal of tic), and energy consumption, 
expressed in entropy units.  Notice that there are four different S parameters, relating 
to the thermodynamic characteristics of the device.  From top to bottom, Siop is used to 
model the non-adiabatic entropy generation from bit erasure.  Sdt is used to model the 
non-adiabatic entropy generation due to energy leakage.  Srop,f models the adiabatic 
entropy generation from reversible operations.  And SA,t expresses the limited entropy-
removal capabilities of the cooling system technology.  All other important 
performance characteristics of our devices are derived from the parameters listed here.
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Reversible Emulation - Ben89

k = 2
n = 3

k = 3
n = 2

One particularly interesting aspect of this optimization problem was optimizing the 
reversible algorithm to maximize cost-efficiency in the worst-case scenario when we 
don’t know how to do any better than by using Bennett’s general 1989 algorithm.  The 
algorithm works by recurisvely doing and undoing subcomputations of different sizes 
and making checkpoints.  The algorithm has two important parameters: n, the number 
of recursive levels, and k, the number of forward “ recursive calls”  to the next lower 
level from a given level.  Here is an illustration of the algorithm for two example 
values of n and k.  Note the different space/time tradeoff in the two cases.  The choice 
of these parameters affects the frequency of dissipation from irreversible operations, 
the spacetime costs per op simulated (including leakage costs), and the average 
number of reversible operations per op simulated which affects adiabatic energy 
losses.  In addition the speed of the adiabatic operations was simultaneously optimized 
together with the algorithm parameters for maximum overall cost-efficiency.
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Technological Trend Assumptions
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Now, in order to actually make any kind of statement about the timing of the emergence of the 
usefulness of reversibility, we had to make some assumptions about how various raw parameters of the 
device technology would change as a function of time over futuredecades.  Although obviously it is 
difficult to forecast these developments exactly, there are somestrong, steady historical trends, as well 
as some clear limits to these trends, that together allow us to sketch out a technology scaling model with 
some confidence in its approximate correctness.

The upper red line shows the entropy generated per irreversible bit erasure, in units of 
Boltzmann’s constant k.  Today in 0.1-micron CMOS technology, this is about 100 thousand.  
Calculations based on the International Technology Roadmap for Semiconductors show that the 
industry wants this to decline by 28% per year in the future (historically it has decreased somewhat 
faster).  At this rate, it would reach the absolute thermodynamic minimum of about 0.7k by about the 
year 2038.

Next, the mahogany line shows average device pitch, or separation between the 
centers of neighboring devices.  This is about 1 micron today if you include space for interconnects.  
The standard Moore’s Law trend is for pitch to decrease by a factor of 2 every 3 years (so that density 
doubles every 18 months).  We assumed that 1 nm (just ~3-4x larger than atomic diameters) is an 
absolute minimum.  This will be reached by about 2033.

The purple line shows clock period, which is about half a nanosecond today and 
decreases at about the same rate as pitch.  The quantum maximum frequency is about half a PetaHertz
per electron volt, giving a minimum period of about 2 femtoseconds if we assume no more than 1 eV of 
energy per bit.  The maximum voltages achievable across nanometer-pitch or smaller structures are on 
the order of a volt, because molecular structure breaks down at much higher voltages than this.  
(Molecular ionization energies are on the order of a few eV.)

Finally, the green line shows cost per bit-device.  The cost per device is on the order 
of a thousandth of cent today.  For example, an Intel Itanium 2 microprocessor with 220 million 
transistors probably costs on the order of 2200 dollars or less. Moore’s Law has cost-per-device 
decreasing by about half every 18 months.  We assume this trend can continue indefinitely, due to 
improvements in 3D nanomanufacturing technology (self-assembly, nanofabrication, etc.), even after 
the pitch limit is reached.  We should note that even if cost per device does not continue decreasing 
after devices reach a minimum size, our results will still end up favoring reversible computing.
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Fixed Technology Assumptions

• Total cost of manufacture:  US$1,000.00
– User will pay this for a high-performance desktop CPU.

• Expected lifetime of hardware: 3 years
– After which obsolescence sets in.

• Total power limit: 100 Watts
– Any more would burn up your lap.  Ouch!

• Power flux limit: 100 Watts per square centimeter
– Approximate limit of air-cooling capabilities

• Standby entropy generation rate: 
1,000 nat/s/device
– Arbitrarily chosen, but achievable

In addition to these assumptions about changing technology parameters, we made the following 
assumptions about parameters which are held constant for one reason or another.

We held total manufacturing cost constant at $1,000, on the assumption that 
individuals will always be willing to pay about this much for a desktop computer or laptop.  This figure 
has not been adjusted for inflation.

We hold the expected lifetime of the hardware to be about 3 years, since in this time 
the original machine would have lost most of its original value anyway (specifically, ¾ of it), due to the 
assumed cost trend.

We set a total power limit of 100 Watts, to model the case of a machine that is held in 
the user’s lap and thus cannot get rid of much more waste heat than this without the user experiencing 
some discomfort (or being annoyed by a noisy fan, think of a 1kW hairdryer).

We set a heat-flux density limit of 100 Watts per cubic centimeter, since this is 
roughly the most that can be achieved using ordinary air-cooling capabilities.  (Actually probably the 
practical air-cooling limit is even less than this.)

Finally, we model a standby entropy generation rate of 1,000 nats/s/device.  This fits 
the time constant for decay of a DRAM circuit node today which is about 1 millisecond.  If a storage 
node were set at a low voltage level holding just a few nats of physical information, this would then 
yield the given rate.  However, keeping this low of a rate as devices shrink to smaller sizes is a major 
challenge for nano-device technology.  But we know it is possible, since for example Drexler’s original 
mechanical rod-logic interlocks have essentially zero rate of standby entropy generation at room 
temperature, due to the high energy barriers presented by the steric intermolecular interactions between 
rigidly-bonded carbon-based structures.  However, whether we can truly maintain this low rate in an 
all-electric or electromechanical technology at nanometer length scales is somewhat of an open 
research question.  This may the most unrealistic assumption in our current model.  I would like to 
invite other researchers to help me develop a more refined scaling model for this parameter, to see how 
it would affect the results.

However, I should point out that if the desired low leakage cannot be maintained at 
say a 1 nm length scale then the answer is obvious: don’ t go down to this scale.  Scaling up the device 
exponentially reduces tunneling losses but only polynomially increases size, cost, and energy.  
Therefore there will be an advantage to not going to the scale where leakage is totally dominant.



44

Cost-Efficiency Benefits 
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Next I wrote a simple numerical optimization program in C that optimizes this model in each 
year’s technology based on the scaling assumptions.  This chart shows number of bit-operations that 
each technology can perform per US dollar, taking into account both time-amortized manufacturing 
cost and energy cost at present electric utility rates.  

In the long run, energy concerns turn out to dominate the situation, but mostly 
through their affect on performance due to the cooling constraints, rather than because of the raw cost 
of energy itself.  This reflects the fact that the total cost of the energy used by a 100-Watt computer 
operating continuously over its 3-year life is currently less than the cost of the computer itself.

The upper, blue line is the cost-efficiency of reversible computers on idealized 
problems for which the algorithmic overheads of reversibility are nil.  The middle, green line is a more 
conservative model that assumes we find no better reversible algorithms for performing arbitrary 
computations than one that was discovered in 1989 by Bennett.  Finally, the lower, red line shows the 
best that conventional irreversible computing can offer.  Notice that its cost-efficiency hits the 
thermodynamic brick wall imposed by Landauer’sprinciple by the year 2038, and cannot improve 
further.  In constrast, reversible computing keeps improving.  It starts to outperform irreversible 
computing between now and 2020, and becomes 1,000-100,000 x more cost-efficient by the 2050’s.

After 2060, the cost-efficiencies of all technologies drop to 0 in this scenario because 
devices are so cheap that in order to spend as much as $1,000 on your computer (as the scenario 
requires), it has to contain so many devices that it dissipates more than 100 Watts due to leakage when 
it is powered up, even when it is sitting passively doing nothing at all!  Obviously, in practice, the 
curves would not actually dip – either leakage rates would be further reduced, continuing the upward 
trend, or the pressure to further reduce device manufacturing cost would halt (due to the dominance of 
energy cost), and so cost-efficiency would stabilize at the peak level shown.
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Redundancy Nr of coding 
information, nats/bit

Logarithm of relative 
decoherencerate, 

ln 1/q = ln Tdec/Tcod

M inimum
entropy 

�
Sop

generated
per operation,

nats/bit-op

Minimizing Entropy Generation in Field-Effect Nano-devices

Earlier I mentioned the tradeoff of leakage with device size.  In the following I attempt to 
quantify that tradeoff rigorously, in a simple model of field-effect devices that takes thermally activated 
leakage and physical information (“size” ) per digital bit into account.  However it does not yet address 
tunneling and physical size, except indirectly insofar as this can be captured in the parameters that we 
do study.

In this more recent model, the key independent parameter is a quantity that I call the 
“quantum quality factor”  q (or Q) of a given device technology.  Q is the ratio between the number of 
useful computational operations performed, and the number of entropy-generating quantum 
“decoherence”  events.  Equivalently, it is the ratio between theenergy involved in carrying out a 
logical transition, and the energy lost to heat.  Or, it is the ratio between the generalized “temperature”  
of the logic system itself, and the generalized temperature of the interaction between the logic system 
and its surroundings.  It is a measure of the degree to which the computational system is insulated from 
its environment.  It measures the extent to which the system can be treated as system that evolves 
ballistically, in a quantum-coherent fashion.  The inverse of q is called the relative decoherence rate, 
and it is an important measure in quantum computing as well.

The axis at the lower left gives the natural logarithm of 1/q, that is, the quality 
increases exponentially as we move towards the lower right.  Therelative decoherence rate here 
ignores thermally-activated leakage, because this is treated separately in this analysis.

The axis at the lower right gives the number of natural-log units worth of physical 
information that is used to encode each bit of information.  In field-effect devices, this controls the 
height of energy barriers as multiples of kT, which affects thermal leakage rates, as we mentioned 
earlier.

Finally, the vertical axis gives the total entropy generated per bit-operation in nats, 
including both the thermally activated leakage as well as the effect of q, when the speed of the adiabatic 
process is optimized so as to minimize the total entropy generation.  When q is very small (less than 
about 11.6) the optimum (indicated by the black line) hugs the left edge of the surface, where only one 
physical bit (e.g. a spin) is used to represent each logical bit.  But for higher q, there exists a local-
optimal level of redundancy of the logic encoding, that depends on q.  Let us look at this optimum 
behavior more closely.
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Lower Limit to Entropy Generation 
Per Bit-Operation

In this graph, we plot 1/q along a logarithmic scale on the horizontal axis.  The upper, 
blue line shows the optimal redundancy factor, which increases logarithmically with 
q.  Note the discontinuity at (1/q = 1/11.6) where the local minimum on the surface 
becomes the global minimum.  The lower, red line shows the logarithm of the factor 
by which the entropy generated per bit-op is reduced below a level of 1 nat.  Note that 
it increases almost as quickly as log q itself.  In other words, so long as we can 
improve the quantum quality of our devices apart from thermally activated leakage, 
we can reduce the total entropy per operation almost proportionally to this, even if we 
are still just using the field effect for switching.

The limitation of this new analysis is that this interesting aspect of 
device modeling has not yet been incorporated into the whole systems-engineering 
context presented earlier, of optimizing overall computational cost-efficiency.   To do 
this, we first need to develop a more detailed technology scaling model, that tells us 
how q may interact with other device characteristics such as a device’s size and its 
adiabatic entropy coefficient.  This is made more difficult by the fact that q includes 
the losses in the resonant, oscillating circuit elements that are needed to power 
adiabatic circuits, which have not previously been well-modeled.  We are currently 
making progress on this new modeling effort, but it has not yet been completed.

That concludes our discussion of our results to date.
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Conclusions
• Reversible Computing is related to, but much 

easier to accomplish than Quantum Computing.

• The case for RC’s long-term, general usefulness 
for future practical, real-world nanocomputer 
engineering is now fairly solid.

• The world has been slow to catch on to the ideas 
of RC, but it has been short-sighted…

• RC will be the foundation for most 21st-century 
computer engineering.

This slide is self-explanatory.  I want to emphasize that reversible computing looks 
like a better choice than quantum computing if we are interested in making the most 
practical impact on general-purpose computing in the long term, with the least effort.  

In contrast, quantum computing can be expected to revolutionize 
cryptography and computational quantum physics, but not much else, and these fields 
only comprise a miniscule fraction of the present and anticipated future world market 
for computing.  However, we cannot be sure that very generally applicable quantum 
algorithms that provide powerful speedups for more common practical algorithmic 
problems are not just around the corner.  But, I suspect not, given the slow pace of 
progress on quantum algorithms to date, as well as a number of proofs of the 
impossibility of speeding up a variety of problems with quantum algorithms.
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By Michael Frank

With device sizes fast approaching atomic-scale limits, 
ballistic circuits that conserve information will offer the 
only possible way to keep improving energy efficiency 
and therefore speed for most computing applications.

To be
submitted

to
Scientific
American:

Title splash from a working Scientific American article currently under development.  
I think reversible computing deserves wider exposure and the time is ripe to promote 
it more broadly.


